Skip to main content
Erschienen in: Computational Mechanics 3/2015

01.09.2015 | Original Paper

Computational aspects of growth-induced instabilities through eigenvalue analysis

verfasst von: A. Javili, B. Dortdivanlioglu, E. Kuhl, C. Linder

Erschienen in: Computational Mechanics | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this contribution is to establish a computational framework to study growth-induced instabilities. The common approach towards growth-induced instabilities is to decompose the deformation multiplicatively into its growth and elastic part. Recently, this concept has been employed in computations of growing continua and has proven to be extremely useful to better understand the material behavior under growth. While finite element simulations seem to be capable of predicting the behavior of growing continua, they often cannot naturally capture the instabilities caused by growth. The accepted strategy to provoke growth-induced instabilities is therefore to perturb the solution of the problem, which indeed results in geometric instabilities in the form of wrinkles and folds. However, this strategy is intrinsically subjective as the user is prescribing the perturbations and the simulations are often highly perturbation-dependent. We propose a different strategy that is inherently suitable for this problem, namely eigenvalue analysis. The main advantages of eigenvalue analysis are that first, no arbitrary, artificial perturbations are needed and second, it is, in general, independent of the time step size. Therefore, the solution obtained by this methodology is not subjective and thus, is generic and reproducible. Equipped with eigenvalue analysis, we are able to compute precisely the critical growth to initiate instabilities. Furthermore, this strategy allows us to compare different finite elements for this family of problems. Our results demonstrate that linear elements perform strikingly poorly, as compared to quadratic elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon Press, New York Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon Press, New York
2.
Zurück zum Zitat Bathe KJ (2013) The subspace iteration method—revisited. Comput Struct 126:177–183CrossRef Bathe KJ (2013) The subspace iteration method—revisited. Comput Struct 126:177–183CrossRef
3.
Zurück zum Zitat Bathe K-J, Wilson EL (1973) Solution methods for eigenvalue problems in structural mechanics. Int J Numer Methods Eng 6:213–226CrossRefMATH Bathe K-J, Wilson EL (1973) Solution methods for eigenvalue problems in structural mechanics. Int J Numer Methods Eng 6:213–226CrossRefMATH
6.
Zurück zum Zitat Biot MA (1965) Mechanics of incremental deformation. Wiley, New York Biot MA (1965) Mechanics of incremental deformation. Wiley, New York
8.
Zurück zum Zitat Budday S, Steinmann P, Kuhl E (2014) The role of mechanics during brain development. J Mech Phys Solids 72:75–92MathSciNetCrossRef Budday S, Steinmann P, Kuhl E (2014) The role of mechanics during brain development. J Mech Phys Solids 72:75–92MathSciNetCrossRef
9.
Zurück zum Zitat Cao Y, Hutchinson JW (2012a) From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc R Soc A 468:94–115MathSciNetCrossRefMATH Cao Y, Hutchinson JW (2012a) From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc R Soc A 468:94–115MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cao Y, Hutchinson JW (2012b) Wrinkling phenomena in Neo-Hookean film/substrate bilayers. J Appl Mech 79:031019CrossRef Cao Y, Hutchinson JW (2012b) Wrinkling phenomena in Neo-Hookean film/substrate bilayers. J Appl Mech 79:031019CrossRef
11.
Zurück zum Zitat Ciarletta P, Balbi V, Kuhl E (2014) Pattern selection in growing tubular tissues. Phys Rev Lett 113:248101CrossRef Ciarletta P, Balbi V, Kuhl E (2014) Pattern selection in growing tubular tissues. Phys Rev Lett 113:248101CrossRef
12.
Zurück zum Zitat Ciarletta P, Maugin GA (2011) Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. Int J Non-Linear Mech 46:1341–1346CrossRef Ciarletta P, Maugin GA (2011) Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. Int J Non-Linear Mech 46:1341–1346CrossRef
13.
16.
Zurück zum Zitat Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J Mech Phys Solids 57:458–471MathSciNetCrossRefMATH Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J Mech Phys Solids 57:458–471MathSciNetCrossRefMATH
17.
Zurück zum Zitat Dunlop JWC, Fischer FD, Gamsjáger E, Fratzl P (2010) A theoretical model for tissue growth in confined geometries. J Mech Phys Solids 58:1073–1087MathSciNetCrossRefMATH Dunlop JWC, Fischer FD, Gamsjáger E, Fratzl P (2010) A theoretical model for tissue growth in confined geometries. J Mech Phys Solids 58:1073–1087MathSciNetCrossRefMATH
18.
Zurück zum Zitat Ehret AE (2015) On a molecular statistical basis for Ogden’s model of rubber elasticity. J Mech Phys Solids 78:249–268MathSciNetCrossRef Ehret AE (2015) On a molecular statistical basis for Ogden’s model of rubber elasticity. J Mech Phys Solids 78:249–268MathSciNetCrossRef
19.
Zurück zum Zitat Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978CrossRefMATH Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978CrossRefMATH
20.
Zurück zum Zitat Eskandari M, Pfaller MR, Kuhl E (2013) On the role of mechanics in chronic lung disease. Materials 6:5639–5658CrossRef Eskandari M, Pfaller MR, Kuhl E (2013) On the role of mechanics in chronic lung disease. Materials 6:5639–5658CrossRef
21.
Zurück zum Zitat Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595–1625MathSciNetCrossRefMATH Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595–1625MathSciNetCrossRefMATH
22.
Zurück zum Zitat Genzer J, Groenewold J (2006) Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310–323CrossRef Genzer J, Groenewold J (2006) Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310–323CrossRef
23.
Zurück zum Zitat Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759–791CrossRefMATH Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759–791CrossRefMATH
24.
Zurück zum Zitat Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. Math Model Biosyst 102:1–44MathSciNetCrossRef Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. Math Model Biosyst 102:1–44MathSciNetCrossRef
25.
Zurück zum Zitat Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101–2118MathSciNetCrossRefMATH Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101–2118MathSciNetCrossRefMATH
26.
Zurück zum Zitat Hutchinson JW (2013) The role of nonlinear substrate elasticity in the wrinkling of thin films. Philos Trans R Soc A 371:20120422MathSciNetCrossRef Hutchinson JW (2013) The role of nonlinear substrate elasticity in the wrinkling of thin films. Philos Trans R Soc A 371:20120422MathSciNetCrossRef
27.
Zurück zum Zitat Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50:4197–4216CrossRef Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50:4197–4216CrossRef
28.
Zurück zum Zitat Javili A, McBride A, Steinmann P (2013) thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef Javili A, McBride A, Steinmann P (2013) thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef
29.
Zurück zum Zitat Javili A, Steinmann P, Kuhl E (2014) A novel strategy to identify the critical conditions for growth-induced instabilities. J Mech Behav Biomed Mater 29:20–32CrossRef Javili A, Steinmann P, Kuhl E (2014) A novel strategy to identify the critical conditions for growth-induced instabilities. J Mech Behav Biomed Mater 29:20–32CrossRef
30.
Zurück zum Zitat Jiang H, Khang DY, Fei H, Kim H, Huang Y, Xiao J, Rogers JA (2008) Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J Mech Phys Solids 56:2585–2598MathSciNetCrossRefMATH Jiang H, Khang DY, Fei H, Kim H, Huang Y, Xiao J, Rogers JA (2008) Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J Mech Phys Solids 56:2585–2598MathSciNetCrossRefMATH
31.
Zurück zum Zitat Jin L, Cai S, Suo Z (2011) Creases in soft tissues generated by growth. Europhys Lett 95:64002CrossRef Jin L, Cai S, Suo Z (2011) Creases in soft tissues generated by growth. Europhys Lett 95:64002CrossRef
32.
Zurück zum Zitat Khang DY, Rogers JA, Lee HH (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19:1526–1536CrossRef Khang DY, Rogers JA, Lee HH (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19:1526–1536CrossRef
33.
Zurück zum Zitat Krischok A, Linder C (2015) On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int J Numer Methods Eng (under review) Krischok A, Linder C (2015) On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int J Numer Methods Eng (under review)
34.
Zurück zum Zitat Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches. Comput Mech 32:71–88CrossRefMATH Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches. Comput Mech 32:71–88CrossRefMATH
35.
Zurück zum Zitat Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6:321–331CrossRef Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6:321–331CrossRef
36.
Zurück zum Zitat Li B, Cao YP, Feng XQ, Gao H (2011) Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J Mech Phys Solids 59:758–774MathSciNetCrossRef Li B, Cao YP, Feng XQ, Gao H (2011) Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J Mech Phys Solids 59:758–774MathSciNetCrossRef
37.
Zurück zum Zitat Li B, Cao Y-P, Feng X-Q, Gao H (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8:5728CrossRef Li B, Cao Y-P, Feng X-Q, Gao H (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8:5728CrossRef
38.
Zurück zum Zitat Linder C, Tkachuk M, Miehe C (2011) A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J Mech Phys Solids 59:2134–2156MathSciNetCrossRefMATH Linder C, Tkachuk M, Miehe C (2011) A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J Mech Phys Solids 59:2134–2156MathSciNetCrossRefMATH
39.
Zurück zum Zitat McBride AT, Javili A, Steinmann P, Bargmann S (2011) Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J Mech Phys Solids 59(10):2116–2133MathSciNetCrossRefMATH McBride AT, Javili A, Steinmann P, Bargmann S (2011) Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J Mech Phys Solids 59(10):2116–2133MathSciNetCrossRefMATH
40.
Zurück zum Zitat Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1–14CrossRef Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1–14CrossRef
41.
Zurück zum Zitat Moulton DE, Goriely A (2011) Circumferential buckling instability of a growing cylindrical tube. J Mech Phys Solids 59(3):525–537MathSciNetCrossRefMATH Moulton DE, Goriely A (2011) Circumferential buckling instability of a growing cylindrical tube. J Mech Phys Solids 59(3):525–537MathSciNetCrossRefMATH
42.
Zurück zum Zitat Nguyen DT (2008) Finite element methods: parallel-sparse statics and Eigen-solutions. Springer, New York Nguyen DT (2008) Finite element methods: parallel-sparse statics and Eigen-solutions. Springer, New York
43.
Zurück zum Zitat Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326(1567):565–584CrossRefMATH Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326(1567):565–584CrossRefMATH
44.
Zurück zum Zitat Panuso D, Bathe KJ (1995) A four-node quadrilateral mixed-interpolated element for solids and fluids. Math Methods Models Appl Sci 5:1113–1128CrossRef Panuso D, Bathe KJ (1995) A four-node quadrilateral mixed-interpolated element for solids and fluids. Math Methods Models Appl Sci 5:1113–1128CrossRef
45.
Zurück zum Zitat Papastavrou A, Steinmann P, Kuhl E (2013) On the mechanics of continua with boundary energies and growing surfaces. J Mech Phys Solids 61:1446–1463MathSciNetCrossRef Papastavrou A, Steinmann P, Kuhl E (2013) On the mechanics of continua with boundary energies and growing surfaces. J Mech Phys Solids 61:1446–1463MathSciNetCrossRef
46.
Zurück zum Zitat Raina A, Linder C (2014) A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J Mech Phys Solids 65:12–34MathSciNetCrossRef Raina A, Linder C (2014) A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J Mech Phys Solids 65:12–34MathSciNetCrossRef
47.
Zurück zum Zitat Raina A, Linder C (2015) A micromechanical model with strong discontinuities for failure in nonwovens at finite deformation. Int J Solids Struct (under review) Raina A, Linder C (2015) A micromechanical model with strong discontinuities for failure in nonwovens at finite deformation. Int J Solids Struct (under review)
48.
Zurück zum Zitat Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189:18–21CrossRef Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189:18–21CrossRef
49.
Zurück zum Zitat Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite-growth in soft elastic tissues. J Biomech 27(4):455–467CrossRef Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite-growth in soft elastic tissues. J Biomech 27(4):455–467CrossRef
50.
Zurück zum Zitat Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH
51.
Zurück zum Zitat Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449MathSciNetCrossRefMATH Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449MathSciNetCrossRefMATH
52.
Zurück zum Zitat Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359–386MathSciNetCrossRefMATH Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359–386MathSciNetCrossRefMATH
53.
Zurück zum Zitat Sun J-Y, Xia S, Moon M-W, Oh KH, Kim K-S (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932–953CrossRef Sun J-Y, Xia S, Moon M-W, Oh KH, Kim K-S (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932–953CrossRef
54.
Zurück zum Zitat Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487–545CrossRef Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487–545CrossRef
55.
Zurück zum Zitat Tepole AB, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59:2177–2190MathSciNetCrossRefMATH Tepole AB, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59:2177–2190MathSciNetCrossRefMATH
56.
Zurück zum Zitat Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York
57.
Zurück zum Zitat Tkachuk M, Linder C (2012) The maximal advance path constraint for the homogenization of materials with random network microstructure. Philos Mag 92:2779–2808CrossRef Tkachuk M, Linder C (2012) The maximal advance path constraint for the homogenization of materials with random network microstructure. Philos Mag 92:2779–2808CrossRef
58.
Zurück zum Zitat Wagner S, Lacour SP, Jones J, Hsu PHI, Sturm JC, Li T, Suo Z (2004) Electronic skin: architecture and components. Phys E 25:326–334CrossRef Wagner S, Lacour SP, Jones J, Hsu PHI, Sturm JC, Li T, Suo Z (2004) Electronic skin: architecture and components. Phys E 25:326–334CrossRef
59.
Zurück zum Zitat Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5:103–109CrossRef Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5:103–109CrossRef
60.
Zurück zum Zitat Joshua A, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353–4366CrossRefMATH Joshua A, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353–4366CrossRefMATH
61.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
62.
Zurück zum Zitat Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201–209CrossRefMATH Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201–209CrossRefMATH
63.
Zurück zum Zitat Wriggers P, Wagner W, Miehe C (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Comput Methods Appl Mech Eng 70:329–347CrossRefMATH Wriggers P, Wagner W, Miehe C (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Comput Methods Appl Mech Eng 70:329–347CrossRefMATH
64.
Zurück zum Zitat Xu F, Potier-Ferry M, Belouettar S, Cong Y (2014) 3D finite element modeling for instabilities in thin films on soft substrates. Int J Solids Struct 51(21–22):3619–3632CrossRef Xu F, Potier-Ferry M, Belouettar S, Cong Y (2014) 3D finite element modeling for instabilities in thin films on soft substrates. Int J Solids Struct 51(21–22):3619–3632CrossRef
Metadaten
Titel
Computational aspects of growth-induced instabilities through eigenvalue analysis
verfasst von
A. Javili
B. Dortdivanlioglu
E. Kuhl
C. Linder
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1178-6

Weitere Artikel der Ausgabe 3/2015

Computational Mechanics 3/2015 Zur Ausgabe

Neuer Inhalt