Skip to main content

2018 | OriginalPaper | Buchkapitel

Computational Complexity of Atomic Chemical Reaction Networks

verfasst von : David Doty, Shaopeng Zhu

Erschienen in: SOFSEM 2018: Theory and Practice of Computer Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Informally, a chemical reaction network is “atomic” if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions.
Primitive atomic, which requires each reaction to preserve the total number of atoms, is shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving [28], the equivalence we show gives an efficient algorithm to decide primitive atomicity.
Subset atomic further requires all atoms be species. We show that deciding if a network is subset atomic is in \(\mathsf {NP}\), and “whether a network is subset atomic with respect to a given atom set” is strongly \(\mathsf {NP}\)-\(\mathsf {complete}\).
Reachably atomic, studied by Adleman, Gopalkrishnan et al. [1, 22], further requires that each species has a sequence of reactions splitting it into its constituent atoms. Using a combinatorial argument, we show that there is a polynomial-time algorithm to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable. We show that the reachability problem for reachably atomic networks is \(\mathsf {PSPACE}\)-\(\mathsf {complete}\).
Finally, we demonstrate equivalence relationships between our definitions and some cases of an existing definition of atomicity due to Gnacadja [21].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This usage of the term “atomic” is different from its usage in traditional areas like operating system or syntactic analysis, where an “atomic” execution is an uninterruptable unit of operation [41].
 
2
There is typically a positive real-valued rate constant associated to each reaction, but we ignore reaction rates in this paper and consequently simplify the definition.
 
Literatur
1.
Zurück zum Zitat Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D.: On the mathematics of the law of mass action. In: Kulkarni, V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 3–46. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9041-3_1 Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D.: On the mathematics of the law of mass action. In: Kulkarni, V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 3–46. Springer, Dordrecht (2014). https://​doi.​org/​10.​1007/​978-94-017-9041-3_​1
2.
Zurück zum Zitat Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.: Time-space trade-offs in molecular computation. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2560–2579 (2017) Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.: Time-space trade-offs in molecular computation. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2560–2579 (2017)
3.
Zurück zum Zitat Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210, 598–618 (2007)MathSciNetCrossRefMATH Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210, 598–618 (2007)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012) Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012)
7.
Zurück zum Zitat Chen, H., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. Distributed Computing (2015, to appear). Special issue of invited papers from DISC 2014 Chen, H., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. Distributed Computing (2015, to appear). Special issue of invited papers from DISC 2014
8.
Zurück zum Zitat Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013). Special issue of invited papers from DNA 2012MathSciNetCrossRefMATH Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013). Special issue of invited papers from DNA 2012MathSciNetCrossRefMATH
9.
Zurück zum Zitat Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: ITCS 2014: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326 (2014) Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: ITCS 2014: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326 (2014)
10.
Zurück zum Zitat Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRef Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRef
11.
12.
Zurück zum Zitat Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Computat. 44(11), 1551–1565 (2009)MathSciNetCrossRefMATH Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Computat. 44(11), 1551–1565 (2009)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784, January 2014 Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784, January 2014
16.
Zurück zum Zitat Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat. Comput. 14(2), 213–223 (2015). Preliminary version appeared in DNAMathSciNetCrossRefMATH Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat. Comput. 14(2), 213–223 (2015). Preliminary version appeared in DNAMathSciNetCrossRefMATH
17.
18.
Zurück zum Zitat Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population protocols. Acta Inform. 54, 1–25 (2016)MathSciNetMATH Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population protocols. Acta Inform. 54, 1–25 (2016)MathSciNetMATH
19.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New York (1979)MATH Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New York (1979)MATH
21.
Zurück zum Zitat Gnacadja, G.: Reachability, persistence, and constructive chemical reaction networks (part II): a formalism for species composition in chemical reaction network theory and application to persistence. J. Math. Chem. 49(10), 2137 (2011)MathSciNetCrossRefMATH Gnacadja, G.: Reachability, persistence, and constructive chemical reaction networks (part II): a formalism for species composition in chemical reaction network theory and application to persistence. J. Math. Chem. 49(10), 2137 (2011)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gopalkrishnan, M.: Private communication. Email (2016) Gopalkrishnan, M.: Private communication. Email (2016)
23.
Zurück zum Zitat Guldberg, C.M., Waage, P.: Studies concerning affinity. In: Forhandlinger: Videnskabs-Selskabet i Christinia, p. 35. Norwegian Academy of Science and Letters (1864) Guldberg, C.M., Waage, P.: Studies concerning affinity. In: Forhandlinger: Videnskabs-Selskabet i Christinia, p. 35. Norwegian Academy of Science and Letters (1864)
24.
Zurück zum Zitat Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings VIII, pp. 125–137 (1974) Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings VIII, pp. 125–137 (1974)
25.
Zurück zum Zitat Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing with DNA. ACS Synth. Bafiology 2(5), 245–254 (2013)CrossRef Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing with DNA. ACS Synth. Bafiology 2(5), 245–254 (2013)CrossRef
27.
29.
Zurück zum Zitat Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1) (2011) Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1) (2011)
30.
Zurück zum Zitat Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013) Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)
31.
Zurück zum Zitat Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)CrossRef Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)CrossRef
32.
Zurück zum Zitat Padirac, A., Fujii, T., Rondelez, Y.: Nucleic acids for the rational design of reaction circuits. Curr. Opin. Biotechnol. 24(4), 575–580 (2013)CrossRef Padirac, A., Fujii, T., Rondelez, Y.: Nucleic acids for the rational design of reaction circuits. Curr. Opin. Biotechnol. 24(4), 575–580 (2013)CrossRef
34.
Zurück zum Zitat Qian, L., Winfree, E., Bruck, J.: Neural network computation with dna strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRef Qian, L., Winfree, E., Bruck, J.: Neural network computation with dna strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRef
35.
Zurück zum Zitat Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)CrossRef Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)CrossRef
36.
Zurück zum Zitat Salehi, S.A., Parhi, K.K., Riedel, M.D.: Chemical reaction networks for computing polynomials. ACS Synth. Biol. 6, 76–83 (2016)CrossRef Salehi, S.A., Parhi, K.K., Riedel, M.D.: Chemical reaction networks for computing polynomials. ACS Synth. Biol. 6, 76–83 (2016)CrossRef
37.
Zurück zum Zitat Salehi, S.A., Riedel, M.D., Parhi, K.K.: Asynchronous discrete-time signal processing with molecular reactions. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 1767–1772. IEEE (2014) Salehi, S.A., Riedel, M.D., Parhi, K.K.: Asynchronous discrete-time signal processing with molecular reactions. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 1767–1772. IEEE (2014)
38.
Zurück zum Zitat Salehi, S.A., Riedel, M.D., Parhi, K.K.: Markov chain computations using molecular reactions. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 689–693. IEEE (2015) Salehi, S.A., Riedel, M.D., Parhi, K.K.: Markov chain computations using molecular reactions. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 689–693. IEEE (2015)
39.
Zurück zum Zitat Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetCrossRefMATH Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Silberschatz, A., Galvin, P.B., Gagne, G., Silberschatz, A.: Operating System Concepts. Addison-Wesley, Reading (2013)MATH Silberschatz, A., Galvin, P.B., Gagne, G., Silberschatz, A.: Operating System Concepts. Addison-Wesley, Reading (2013)MATH
43.
Zurück zum Zitat Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393 (2010). Preliminary version appeared in DNA 2008CrossRef Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393 (2010). Preliminary version appeared in DNA 2008CrossRef
44.
Zurück zum Zitat Srinivas, N.: Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement. Ph.D. thesis, California Institute of Technology (2015) Srinivas, N.: Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement. Ph.D. thesis, California Institute of Technology (2015)
45.
Zurück zum Zitat Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: DNA 2012: Proceedings of the 18th International Meeting on DNA Computing and Molecular Programming, pp. 135–149 (2012) Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: DNA 2012: Proceedings of the 18th International Meeting on DNA Computing and Molecular Programming, pp. 135–149 (2012)
46.
Zurück zum Zitat Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRef Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRef
Metadaten
Titel
Computational Complexity of Atomic Chemical Reaction Networks
verfasst von
David Doty
Shaopeng Zhu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-73117-9_15