Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Computational Compressible Aerodynamics

verfasst von : Tapan K. Sengupta, Yogesh G. Bhumkar

Erschienen in: Computational Aerodynamics and Aeroacoustics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapter, we kept our attention focused on incompressible flow problems in aerodynamics for low and high Reynolds numbers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abhishek, A. Analysis, Validation, Prediction and Fundamental Understanding of Rotor Blade Loads in an Unsteady Maneuver. PhD dissertation, Dept. of Aerospace Engg., Univ. of Maryland (2010) Abhishek, A. Analysis, Validation, Prediction and Fundamental Understanding of Rotor Blade Loads in an Unsteady Maneuver. PhD dissertation, Dept. of Aerospace Engg., Univ. of Maryland (2010)
2.
Zurück zum Zitat A. Alshabu, H. Olivier, I. Klioutchnikov, Investigation of upstream moving pressure waves on a supercritical airfoil. Aero. Sci. Tech. 10, 465–473 (2006)CrossRef A. Alshabu, H. Olivier, I. Klioutchnikov, Investigation of upstream moving pressure waves on a supercritical airfoil. Aero. Sci. Tech. 10, 465–473 (2006)CrossRef
3.
4.
Zurück zum Zitat H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions (Cambridge Univ, Press, 2011)MATHCrossRef H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions (Cambridge Univ, Press, 2011)MATHCrossRef
5.
Zurück zum Zitat P.M. Bagade, Y.G. Bhumkar, T.K. Sengupta, An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput. Fluids 103, 275–289 (2014)MathSciNetMATHCrossRef P.M. Bagade, Y.G. Bhumkar, T.K. Sengupta, An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput. Fluids 103, 275–289 (2014)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Bagade, P. M., Laurendeau, E., Bhole, A., Sharma, N. and Sengupta, T. K. Comparison of RANS and DNS for transitional flow over WTEA-TE1 airfoil. In proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, (Editors: Profs. T. K. Sengupta, S. K. Lele, K. R. Sreenivasan and P. A. Davidson) World Scientific Publishing Company, Singapore, 349–357 (2015) Bagade, P. M., Laurendeau, E., Bhole, A., Sharma, N. and Sengupta, T. K. Comparison of RANS and DNS for transitional flow over WTEA-TE1 airfoil. In proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, (Editors: Profs. T. K. Sengupta, S. K. Lele, K. R. Sreenivasan and P. A. Davidson) World Scientific Publishing Company, Singapore, 349–357 (2015)
7.
Zurück zum Zitat B.S. Baldwin, H. Lomax, Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78–257, (1978) B.S. Baldwin, H. Lomax, Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78–257, (1978)
8.
Zurück zum Zitat R.W. Barnwell, A similarity rule for sidewall-boundary-layer effect in two-dimensional wind tunnels. AIAA Paper 79–0108, (1979) R.W. Barnwell, A similarity rule for sidewall-boundary-layer effect in two-dimensional wind tunnels. AIAA Paper 79–0108, (1979)
9.
Zurück zum Zitat Berton, E., Allain, C., Favier, D. and Maresca, C. Experimental methods for subsonic flow measurements. Notes on Numer. Fluid Mech. and Multidiscip. Des., 81, 97–104 (2002) Berton, E., Allain, C., Favier, D. and Maresca, C. Experimental methods for subsonic flow measurements. Notes on Numer. Fluid Mech. and Multidiscip. Des., 81, 97–104 (2002)
10.
Zurück zum Zitat Bhole, A. Direct Numerical Simulation of Transonic flow over Airfoils. M.S. thesis, Dept. of Aerospace Engg., IIT Kanpur (2013) Bhole, A. Direct Numerical Simulation of Transonic flow over Airfoils. M.S. thesis, Dept. of Aerospace Engg., IIT Kanpur (2013)
12.
Zurück zum Zitat Binion, T. W. Limitations of Available Data. AGARD-AR-138, May (1979) Binion, T. W. Limitations of Available Data. AGARD-AR-138, May (1979)
13.
Zurück zum Zitat C. Bogey, C. Bailly, On the application of explicit spatial filtering to the variables or fluxes of linear equations. J. Comput. Phys. 225, 1211–7 (2007)MATHCrossRef C. Bogey, C. Bailly, On the application of explicit spatial filtering to the variables or fluxes of linear equations. J. Comput. Phys. 225, 1211–7 (2007)MATHCrossRef
14.
Zurück zum Zitat Bowles, P. O. Wind Tunnel Experiments on the Effect of Compressibility on the Attributes of Dynamic Stall. Univ. of Notre Dame (2012) Bowles, P. O. Wind Tunnel Experiments on the Effect of Compressibility on the Attributes of Dynamic Stall. Univ. of Notre Dame (2012)
15.
Zurück zum Zitat M.S. Chandrasekhara, L.W. Carr, Flow visualization studies of the Mach number effects on dynamic stall of an oscillating airfoil. J. Aircraft 27(6), 516–522 (1990)CrossRef M.S. Chandrasekhara, L.W. Carr, Flow visualization studies of the Mach number effects on dynamic stall of an oscillating airfoil. J. Aircraft 27(6), 516–522 (1990)CrossRef
16.
Zurück zum Zitat M.S. Chandrasekhara, L.W. Carr, M.C. Wilder, Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil. AIAA J. 32(3), 586–593 (1994)CrossRef M.S. Chandrasekhara, L.W. Carr, M.C. Wilder, Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil. AIAA J. 32(3), 586–593 (1994)CrossRef
17.
Zurück zum Zitat L. Chen, C. Xu, X. Lu, Numerical investigation of the compressible flow past an airfoil. J. Fluid Mech. 643, 97–126 (2010)MATHCrossRef L. Chen, C. Xu, X. Lu, Numerical investigation of the compressible flow past an airfoil. J. Fluid Mech. 643, 97–126 (2010)MATHCrossRef
18.
Zurück zum Zitat J. Chen, X.-T. Shi, T.-J. Wang, Z.-S. She, Wavy structures in compressible mixing layers. Acta Mech. Sin. 29, 633–640 (2013)CrossRef J. Chen, X.-T. Shi, T.-J. Wang, Z.-S. She, Wavy structures in compressible mixing layers. Acta Mech. Sin. 29, 633–640 (2013)CrossRef
19.
Zurück zum Zitat A. Choudhry, R. Leknys, M. Arjomandi, R. Kelso, An insight into the dynamic stall lift characteristics. Exp. Therm. and Fluid Sci. 58, 188–208 (2014)CrossRef A. Choudhry, R. Leknys, M. Arjomandi, R. Kelso, An insight into the dynamic stall lift characteristics. Exp. Therm. and Fluid Sci. 58, 188–208 (2014)CrossRef
20.
Zurück zum Zitat T.C. Corke, P.O. Bowles, C. He, E.C. Matlis, Sensing and control of flow separation using plasma actuators. Philos. Trans. R. Soc. A 369, 1459–1475 (2011)CrossRef T.C. Corke, P.O. Bowles, C. He, E.C. Matlis, Sensing and control of flow separation using plasma actuators. Philos. Trans. R. Soc. A 369, 1459–1475 (2011)CrossRef
21.
Zurück zum Zitat T.C. Corke, O.F. Thomas, Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annu. Rev. Fluid Mech. 47, 479–505 (2015)MathSciNetCrossRef T.C. Corke, O.F. Thomas, Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annu. Rev. Fluid Mech. 47, 479–505 (2015)MathSciNetCrossRef
22.
Zurück zum Zitat Crimi, P. Dynamic stall Technical Report No. AGARD-AG-172 (1973) Crimi, P. Dynamic stall Technical Report No. AGARD-AG-172 (1973)
23.
Zurück zum Zitat Datta, A. and Chopra, I. Prediction of UH-60A dynamic stall loads in high altitude level flight using CFD/CSD coupling. In \(61^{st}\) Annual Forum Proceedings-American Helicopter Society, Grapevine, Texas, June 1–3 (2005) Datta, A. and Chopra, I. Prediction of UH-60A dynamic stall loads in high altitude level flight using CFD/CSD coupling. In \(61^{st}\)  Annual Forum Proceedings-American Helicopter Society, Grapevine, Texas, June 1–3 (2005)
24.
Zurück zum Zitat S. Deck, Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1565 (2005)CrossRef S. Deck, Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1565 (2005)CrossRef
25.
Zurück zum Zitat A. Dipankar, T.K. Sengupta, Symmetrized compact schemes for receptivity study of 2D channel flow. J. Comput. Phys. 215, 245–273 (2006)MATHCrossRef A. Dipankar, T.K. Sengupta, Symmetrized compact schemes for receptivity study of 2D channel flow. J. Comput. Phys. 215, 245–273 (2006)MATHCrossRef
26.
Zurück zum Zitat J.A. Ekaterinaris, M.F. Platzer, Computational prediction of airfoil dynamic stall. Prog. in Aerosp. Sci. 33(11), 759–846 (1998)CrossRef J.A. Ekaterinaris, M.F. Platzer, Computational prediction of airfoil dynamic stall. Prog. in Aerosp. Sci. 33(11), 759–846 (1998)CrossRef
27.
Zurück zum Zitat M. Fujino, Y. Yoshizaki, Y. Kawamura, Natural-laminar-flow airfoil development for a lightweight business jet. J. Aircraft 40(4), 609–615 (2003)CrossRef M. Fujino, Y. Yoshizaki, Y. Kawamura, Natural-laminar-flow airfoil development for a lightweight business jet. J. Aircraft 40(4), 609–615 (2003)CrossRef
28.
Zurück zum Zitat Fukushima, T. and Dadone, L. U. Comparison of dynamic stall phenomena for pitching and vertical translation motions. NASA CR-2793 (1977) Fukushima, T. and Dadone, L. U. Comparison of dynamic stall phenomena for pitching and vertical translation motions. NASA CR-2793 (1977)
29.
Zurück zum Zitat Garner, H. C., Rogers, E., Acum, W. and Maskell, E. Subsonic Wind Tunnel Wall corrections. AGARDograph, AG-109 (1966) Garner, H. C., Rogers, E., Acum, W. and Maskell, E. Subsonic Wind Tunnel Wall corrections. AGARDograph, AG-109 (1966)
30.
Zurück zum Zitat Gad-el-Hak, M. and Ho, C-M. Unsteady vortical flow around three-dimensional lifting surfaces. AIAA J., 24(5), 713–721 (1986) Gad-el-Hak, M. and Ho, C-M. Unsteady vortical flow around three-dimensional lifting surfaces. AIAA J., 24(5), 713–721 (1986)
31.
Zurück zum Zitat A. Garbaruk, M. Shur, M. Strelets, P. Spalart, Numerical study of wind tunnel wall effects on transonic airfoil flow. AIAA J. 41, 1046–1054 (2003)CrossRef A. Garbaruk, M. Shur, M. Strelets, P. Spalart, Numerical study of wind tunnel wall effects on transonic airfoil flow. AIAA J. 41, 1046–1054 (2003)CrossRef
32.
Zurück zum Zitat D.V. Gaitonde, J.S. Shang, J.L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Num. Methods in Engg. 45(12), 1849–1869 (1999)MATHCrossRef D.V. Gaitonde, J.S. Shang, J.L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Num. Methods in Engg. 45(12), 1849–1869 (1999)MATHCrossRef
33.
Zurück zum Zitat D.V. Gaitonde, M.R. Visbal, Further development of a Navier-Stokes solution procedure based on higher-order formulas. AIAA J. 99–0557, (1999) D.V. Gaitonde, M.R. Visbal, Further development of a Navier-Stokes solution procedure based on higher-order formulas. AIAA J. 99–0557, (1999)
34.
Zurück zum Zitat D.V. Gaitonde, M.R. Visbal, Pad\({\acute{e}}\)-Type Higher-Order Boundary Filters for the Navier-Stokes equations. AIAA J. 38(11), 2103–2112 (2000)CrossRef D.V. Gaitonde, M.R. Visbal, Pad\({\acute{e}}\)-Type Higher-Order Boundary Filters for the Navier-Stokes equations. AIAA J. 38(11), 2103–2112 (2000)CrossRef
35.
Zurück zum Zitat L. Gray, J. Liiva, Wind Tunnel Tests of Thin Airfoils Oscillating Near Stall, vol. II (Data Report. Boeing Vertol Co, Philadelphia PA, 1969) L. Gray, J. Liiva, Wind Tunnel Tests of Thin Airfoils Oscillating Near Stall, vol. II (Data Report. Boeing Vertol Co, Philadelphia PA, 1969)
36.
Zurück zum Zitat G. Grötzbach, Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection. J. Comput. Phys. 49(2), 241–264 (1983)CrossRef G. Grötzbach, Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection. J. Comput. Phys. 49(2), 241–264 (1983)CrossRef
37.
Zurück zum Zitat Ham, N. D. and Young, M. I. Limit cycle torsional motion of helicopter blades due to stall. J. Sound and Vibration, 4(3), 431IN17433–432444 (1966) Ham, N. D. and Young, M. I. Limit cycle torsional motion of helicopter blades due to stall. J. Sound and Vibration, 4(3), 431IN17433–432444 (1966)
38.
Zurück zum Zitat C.D. Harris, Two-dimensional Aerodynamic Characteristics of the NACA0012 airfoil in the Langley 8-foot Transonic Pressure Tunnel. NASA Report-TM 81927, (1981) C.D. Harris, Two-dimensional Aerodynamic Characteristics of the NACA0012 airfoil in the Langley 8-foot Transonic Pressure Tunnel. NASA Report-TM 81927, (1981)
39.
Zurück zum Zitat V. Hermes, I. Klioutchnikov, H. Oliver, Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aero. Sci. Tech. 25, 224–233 (2013)CrossRef V. Hermes, I. Klioutchnikov, H. Oliver, Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aero. Sci. Tech. 25, 224–233 (2013)CrossRef
40.
Zurück zum Zitat Hirsch, C. Numerical Computation of Internal and External Flows. 1, Fundamentals of Numerical Discretization, Wiley-Interscience Publication, New York, USA (1994) Hirsch, C. Numerical Computation of Internal and External Flows. 1, Fundamentals of Numerical Discretization, Wiley-Interscience Publication, New York, USA (1994)
41.
Zurück zum Zitat Hoffmann, K. A. and Chiang, S. T. Computational Fluid Dynamics.II, \(4^{th}\) Ed., Engineering Education System, Wichita, Kansas, USA (2000) Hoffmann, K. A. and Chiang, S. T. Computational Fluid Dynamics.II, \(4^{th}\) Ed., Engineering Education System, Wichita, Kansas, USA (2000)
42.
Zurück zum Zitat Houghton, E. L., Carpenter, P. W., Collicott, S. and Valentine, D. Aerodynamics for Engineering Students. \(6^{th}\) Ed., Butterworth-Heinemann (2013) Houghton, E. L., Carpenter, P. W., Collicott, S. and Valentine, D. Aerodynamics for Engineering Students. \(6^{th}\) Ed., Butterworth-Heinemann (2013)
43.
Zurück zum Zitat J.L. Jacocks, An Investigation of the Aerodynamic Characteristics of Ventilated Test Section Walls for Transonic Wind Tunnel: PhD Dissertation (Univ, Tennessee, 1976) J.L. Jacocks, An Investigation of the Aerodynamic Characteristics of Ventilated Test Section Walls for Transonic Wind Tunnel: PhD Dissertation (Univ, Tennessee, 1976)
44.
Zurück zum Zitat A. Jameson, K. Ou, 50 years of transonic aircraft design. Prog. Aero. Sci. 47(5), 308–318 (2011)CrossRef A. Jameson, K. Ou, 50 years of transonic aircraft design. Prog. Aero. Sci. 47(5), 308–318 (2011)CrossRef
45.
Zurück zum Zitat Jameson A., Schmidt W. and Turkel E., Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,AIAA 1981–1259, AIAA 14th Fluid and Plasma Dynamic Conf., June 23–25, (1981) Palo Alto, California Jameson A., Schmidt W. and Turkel E., Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,AIAA 1981–1259, AIAA 14th Fluid and Plasma Dynamic Conf., June 23–25, (1981) Palo Alto, California
46.
Zurück zum Zitat Jones, W. P. (Ed.) AGARD Manual on Aeroelasticity. AGARD, (1961) Jones, W. P. (Ed.) AGARD Manual on Aeroelasticity. AGARD, (1961)
47.
Zurück zum Zitat Kemp, L. D. An Analytic Study for the Design of Advanced Rotor Airfoils. NASA Report CR-112, 297 (1973) Kemp, L. D. An Analytic Study for the Design of Advanced Rotor Airfoils. NASA Report CR-112, 297 (1973)
48.
Zurück zum Zitat R. Langtry, F.R. Menter, Correlation based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)CrossRef R. Langtry, F.R. Menter, Correlation based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)CrossRef
49.
Zurück zum Zitat Langtry R. and Menter F. R. Transition modeling for general CFD applications in aeronautics. AIAA, \(43^{rd}\) AIAA Aerospace Sciences Metting and Exhibit, Reno, Nevada, 522 (2005) Langtry R. and Menter F. R. Transition modeling for general CFD applications in aeronautics. AIAA, \(43^{rd}\) AIAA Aerospace Sciences Metting and Exhibit, Reno, Nevada, 522 (2005)
50.
Zurück zum Zitat P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure and Appl. Math. 7, 159–193 (1954)MathSciNetMATHCrossRef P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure and Appl. Math. 7, 159–193 (1954)MathSciNetMATHCrossRef
51.
Zurück zum Zitat B.H.K. Lee, Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28, 942–944 (1990)CrossRef B.H.K. Lee, Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28, 942–944 (1990)CrossRef
52.
Zurück zum Zitat B.H.K. Lee, Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aero. Sci. 37, 147–196 (2001)CrossRef B.H.K. Lee, Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aero. Sci. 37, 147–196 (2001)CrossRef
53.
Zurück zum Zitat B.H.K. Lee, H. Murty, H. Jiang, Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32, 789–796 (1994)MATHCrossRef B.H.K. Lee, H. Murty, H. Jiang, Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32, 789–796 (1994)MATHCrossRef
54.
Zurück zum Zitat S.K. Lele, T. Poinsot, Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)MathSciNetMATHCrossRef S.K. Lele, T. Poinsot, Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)MathSciNetMATHCrossRef
55.
Zurück zum Zitat Leishman, J. G. Principles of Helicopter Aerodynamics. \(2^{nd}\) Ed., Cambridge Univ. Press (2006) Leishman, J. G. Principles of Helicopter Aerodynamics. \(2^{nd}\) Ed., Cambridge Univ. Press (2006)
56.
Zurück zum Zitat J.G. Leishman, T.S. Beddoes, A Semi-Empirical Model for Dynamic Stall. J. American Helicopter society 34(3), 3–17 (1989) J.G. Leishman, T.S. Beddoes, A Semi-Empirical Model for Dynamic Stall. J. American Helicopter society 34(3), 3–17 (1989)
57.
Zurück zum Zitat H. Liepmann, A. Roshko, Elements of Gasdynamics (Dover Publications, Inc., Mineola, New York, 1956)MATH H. Liepmann, A. Roshko, Elements of Gasdynamics (Dover Publications, Inc., Mineola, New York, 1956)MATH
58.
Zurück zum Zitat M.S. Loginov, N.A. Adams, A.A. Zheltovodov, Large-eddy simulations of shock-wave/turbulent-boundaty-layer interaction. J. Fluid Mech. 565, 135–169 (2006)MATHCrossRef M.S. Loginov, N.A. Adams, A.A. Zheltovodov, Large-eddy simulations of shock-wave/turbulent-boundaty-layer interaction. J. Fluid Mech. 565, 135–169 (2006)MATHCrossRef
59.
Zurück zum Zitat P.F. Lorber, F.O. Carta, Airfoil dynamic stall at constant pitch rate and high Reynolds number. J. Aircraft 25(6), 548–556 (1988)CrossRef P.F. Lorber, F.O. Carta, Airfoil dynamic stall at constant pitch rate and high Reynolds number. J. Aircraft 25(6), 548–556 (1988)CrossRef
60.
Zurück zum Zitat Mamou M., M\(\acute{e}\)barki, Y., Khalid M., Genest M., Coutu D., Popov A. V., Sainmont C., Georges T., Grigorie L., Botez R. M., Brailovski V., Terriault P., Paraschivoiu I. and Laurendeau E. Aerodynamic Performance Optimization of a Wind Ttunnel Morphing wing Model Subject to Various Cruise Flow Conditions.\(27^{th}\) International Congress of the Aeronautical Sciences, ICAS (2010) Mamou M., M\(\acute{e}\)barki, Y., Khalid M., Genest M., Coutu D., Popov A. V., Sainmont C., Georges T., Grigorie L., Botez R. M., Brailovski V., Terriault P., Paraschivoiu I. and Laurendeau E. Aerodynamic Performance Optimization of a Wind Ttunnel Morphing wing Model Subject to Various Cruise Flow Conditions.\(27^{th}\) International Congress of the Aeronautical Sciences, ICAS (2010)
61.
Zurück zum Zitat J.G. Marvin, L.L. Lewy, H.L. Seegmiller, Turbulence modelling for unsteady transonic flows. AIAA J. 18, 489–496 (1980)CrossRef J.G. Marvin, L.L. Lewy, H.L. Seegmiller, Turbulence modelling for unsteady transonic flows. AIAA J. 18, 489–496 (1980)CrossRef
62.
Zurück zum Zitat G. Martinat, M. Braza, Y. Hoarau, G. Harran, Turbulence modelling of the flow past a pitching NACA0012 airfoil at \(10^5\) and \(10^6\) Reynolds numbers. J. Fluids and Struct. 24(8), 1294–1303 (2008)CrossRef G. Martinat, M. Braza, Y. Hoarau, G. Harran, Turbulence modelling of the flow past a pitching NACA0012 airfoil at \(10^5\) and \(10^6\) Reynolds numbers. J. Fluids and Struct. 24(8), 1294–1303 (2008)CrossRef
63.
Zurück zum Zitat Maybey, D. G. Physical Phenomena Associated with Unsteady Transonic Flows, in Unsteady Transonic Aerodynamics, vol. 120, Progress in Astronautics and Aeronautics, AIAA Series. AIAA, Washington, DC, USA (1989) Maybey, D. G. Physical Phenomena Associated with Unsteady Transonic Flows, in Unsteady Transonic Aerodynamics, vol. 120, Progress in Astronautics and Aeronautics, AIAA Series. AIAA, Washington, DC, USA (1989)
64.
Zurück zum Zitat Maybey, D. G. Some remarks on the design of transonic tunnels with low levels of flow unsteadiness. NASA CR-2722 (1976) Maybey, D. G. Some remarks on the design of transonic tunnels with low levels of flow unsteadiness. NASA CR-2722 (1976)
65.
Zurück zum Zitat McAlister, K. W., Pucci, S. L., McCroskey, W. J. and Carr, L. W. An experimental study of dynamic stall on advanced airfoil sections: Vol. 2: Pressure and Force Data. NASA Technical Memorandum, 84245 (1982) McAlister, K. W., Pucci, S. L., McCroskey, W. J. and Carr, L. W. An experimental study of dynamic stall on advanced airfoil sections: Vol. 2: Pressure and Force Data. NASA Technical Memorandum, 84245 (1982)
66.
Zurück zum Zitat McCroskey, W. J., McAlister, K. W., Carr, L. W., Pucci, S. L., Lambert, O. and Indergrand, R. F. Dynamic stall on advanced airfoil sections. \(36^{th}\) Annual National Forum of the American Helicopter Society (1980) McCroskey, W. J., McAlister, K. W., Carr, L. W., Pucci, S. L., Lambert, O. and Indergrand, R. F. Dynamic stall on advanced airfoil sections. \(36^{th}\) Annual National Forum of the American Helicopter Society (1980)
67.
Zurück zum Zitat W.J. McCroskey, K.W. McAlister, L.W. Carr, S.L. Pucci, O. Lambert, R.F. Indergrand, Dynamic stall on advanced airfoil sections. J. Am Helicopter Soc. 26(3), 40–50 (1981)CrossRef W.J. McCroskey, K.W. McAlister, L.W. Carr, S.L. Pucci, O. Lambert, R.F. Indergrand, Dynamic stall on advanced airfoil sections. J. Am Helicopter Soc. 26(3), 40–50 (1981)CrossRef
68.
Zurück zum Zitat McCroskey, W. J., McAlister, K. W., Carr, L. W. and Pucci, S. L. An experimental study of dynamic stall on advanced airfoil sections: Vol. 1: Summary of the Experiment. NASA Technical Memorandum, 84245 (1982) McCroskey, W. J., McAlister, K. W., Carr, L. W. and Pucci, S. L. An experimental study of dynamic stall on advanced airfoil sections: Vol. 1: Summary of the Experiment. NASA Technical Memorandum, 84245 (1982)
69.
Zurück zum Zitat F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef
70.
Zurück zum Zitat J.E. Mercer, E.W. Geller, M.L. Johnson, A. Jameson, Transonic flow calculations for a wing in a wind tunnel. AIAA J. 18(9), 707–711 (1981) J.E. Mercer, E.W. Geller, M.L. Johnson, A. Jameson, Transonic flow calculations for a wing in a wind tunnel. AIAA J. 18(9), 707–711 (1981)
71.
Zurück zum Zitat Maybey, D. G. Flow unsteadiness and model vibration in wind tunnels at subsonic and transonic speeds. Aeronautical Research Council, ARC CP-1155 (1971) Maybey, D. G. Flow unsteadiness and model vibration in wind tunnels at subsonic and transonic speeds. Aeronautical Research Council, ARC CP-1155 (1971)
72.
Zurück zum Zitat M.T. Nair, T.K. Sengupta, Orthogonal grid generation for Navier-Stokes computations. Int. J. Numer. Methods Fluids 28, 215–224 (1998)MATHCrossRef M.T. Nair, T.K. Sengupta, Orthogonal grid generation for Navier-Stokes computations. Int. J. Numer. Methods Fluids 28, 215–224 (1998)MATHCrossRef
73.
Zurück zum Zitat T.H. Moulden, Fundamentals of Transonic Flow (Wiley-Interscience Publication, Canada, 1984)MATH T.H. Moulden, Fundamentals of Transonic Flow (Wiley-Interscience Publication, Canada, 1984)MATH
74.
Zurück zum Zitat D. Nixon, Unsteady Transonic Aerodynamics, Progress in Astronautics and Aeronautics Series (120) (AIAA, Washington, DC, 1989)CrossRef D. Nixon, Unsteady Transonic Aerodynamics, Progress in Astronautics and Aeronautics Series (120) (AIAA, Washington, DC, 1989)CrossRef
75.
Zurück zum Zitat K. Ohmi, M. Coutanceau, T.P. Loc, A. Dulieu, Vortex formation around an oscillating and translating airfoil at large incidences. J. Fluid Mech. 211, 37–60 (1990)CrossRef K. Ohmi, M. Coutanceau, T.P. Loc, A. Dulieu, Vortex formation around an oscillating and translating airfoil at large incidences. J. Fluid Mech. 211, 37–60 (1990)CrossRef
76.
Zurück zum Zitat H. Otto, Systematical investigation of the influence of wind tunnel turbulence on the results of force measurements. AGARD CP 174, (1976) H. Otto, Systematical investigation of the influence of wind tunnel turbulence on the results of force measurements. AGARD CP 174, (1976)
77.
Zurück zum Zitat J. Panda, K.B.M.Q. Zaman, Experimental investigation of the flow field of an oscillating airfoil and estimation of lift from wake survey. J. Fluid Mech 265, 65–95 (1994)CrossRef J. Panda, K.B.M.Q. Zaman, Experimental investigation of the flow field of an oscillating airfoil and estimation of lift from wake survey. J. Fluid Mech 265, 65–95 (1994)CrossRef
78.
Zurück zum Zitat S.R. Pate, C.J. Schueler, Radiated aerodynamic noise effects on boundary layer transition in supersonic and hypersonic wind tunnels. AIAA J. 7, 450–457 (1968)CrossRef S.R. Pate, C.J. Schueler, Radiated aerodynamic noise effects on boundary layer transition in supersonic and hypersonic wind tunnels. AIAA J. 7, 450–457 (1968)CrossRef
79.
Zurück zum Zitat H.H. Pearcy, Shock induced Separation and Its Prevention by Design and Boundary Layer Control, Boundary Layer and Flow Control, vol. 2 (Pergamon, Oxford, UK, 1961) H.H. Pearcy, Shock induced Separation and Its Prevention by Design and Boundary Layer Control, Boundary Layer and Flow Control, vol. 2 (Pergamon, Oxford, UK, 1961)
80.
Zurück zum Zitat Pearcey, H. H., Wilby, P. G., Riley, M. J. and Brotherhood, P. The Derivation and Verification of a New Rotor Profile on the Basis of flow Phenomena; Aerofoil Research and Flight Tests. Aerodynamics of Rotary wings, AGARD CP–111 (1972) Pearcey, H. H., Wilby, P. G., Riley, M. J. and Brotherhood, P. The Derivation and Verification of a New Rotor Profile on the Basis of flow Phenomena; Aerofoil Research and Flight Tests. Aerodynamics of Rotary wings, AGARD CP–111 (1972)
81.
Zurück zum Zitat S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)MATHCrossRef S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)MATHCrossRef
82.
Zurück zum Zitat Pirozzoli, S. and Grasso, F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M \(=\)\(2.25\). Phys. Fluids, 18, 065113 (2006) Pirozzoli, S. and Grasso, F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M \(=\)\(2.25\). Phys. Fluids, 18, 065113 (2006)
83.
Zurück zum Zitat Popov, A. V., Botez, R. M. and Labib, M. Transition point detection from the surface pressure distribution for controller design. J. Aircraft, 45(1) (2008) Popov, A. V., Botez, R. M. and Labib, M. Transition point detection from the surface pressure distribution for controller design. J. Aircraft, 45(1) (2008)
84.
Zurück zum Zitat Popov, A. V., Grigorie, L. T., Botez, R. M., M\(\acute{e}\)barki, Y. and Mamou, M. Modeling and testing of a morphing wing in open-loop architecture. J. Aircraft, 47(3) (2010) Popov, A. V., Grigorie, L. T., Botez, R. M., M\(\acute{e}\)barki, Y. and Mamou, M. Modeling and testing of a morphing wing in open-loop architecture. J. Aircraft, 47(3) (2010)
85.
Zurück zum Zitat Popov, A. V., Grigorie, L. T., Botez, R. M., M\(\acute{e}\)barki, Y. and Mamou, M. Closed-loop control validation of a morphing wing using wind tunnel tests. J. Aircraft, 47(4) (2010) Popov, A. V., Grigorie, L. T., Botez, R. M., M\(\acute{e}\)barki, Y. and Mamou, M. Closed-loop control validation of a morphing wing using wind tunnel tests. J. Aircraft, 47(4) (2010)
86.
Zurück zum Zitat M.K. Rajpoot, T.K. Sengupta, P.K. Dutt, Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys 229, 3623–3651 (2010)MathSciNetMATHCrossRef M.K. Rajpoot, T.K. Sengupta, P.K. Dutt, Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys 229, 3623–3651 (2010)MathSciNetMATHCrossRef
87.
Zurück zum Zitat MJWu Ringuette, M. and Martin, M. P., Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008) MJWu Ringuette, M. and Martin, M. P., Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)
88.
Zurück zum Zitat D.P. Rizzetta, M.R. Visbal, G.A. Blaisdell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation Int. J. Num. Methods Fluids 42, 665–693 (2003)MATHCrossRef D.P. Rizzetta, M.R. Visbal, G.A. Blaisdell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation Int. J. Num. Methods Fluids 42, 665–693 (2003)MATHCrossRef
89.
Zurück zum Zitat M. Robitaille, A. Mosahebi, E. Laurendeau, Verification and Validation of the NSCODE Implementation of the\(\gamma -Re_{\theta }\) Transition Model (Design and Operations, conf. Royal Aero. Soc., Bristol, UK, In Advanced Aero Concepts, 2014) M. Robitaille, A. Mosahebi, E. Laurendeau, Verification and Validation of the NSCODE Implementation of the\(\gamma -Re_{\theta }\) Transition Model (Design and Operations, conf. Royal Aero. Soc., Bristol, UK, In Advanced Aero Concepts, 2014)
90.
Zurück zum Zitat C.L. Rumsey, M.D. Sanetrik, R.T. Biedron, N.D. Melson, E.B. Parlette, Efficiency and accuracy of time-accurate turbulent Navier-Stokes computations. Comput. Fluids 25, 217–236 (1996)MATHCrossRef C.L. Rumsey, M.D. Sanetrik, R.T. Biedron, N.D. Melson, E.B. Parlette, Efficiency and accuracy of time-accurate turbulent Navier-Stokes computations. Comput. Fluids 25, 217–236 (1996)MATHCrossRef
91.
Zurück zum Zitat J. Sangwan, T.K. Sengupta, P. Suchandra, Investigation of compressibility effects on dynamic stall of pitching airfoil. Phys. Fluids 29, 076104 (2017)CrossRef J. Sangwan, T.K. Sengupta, P. Suchandra, Investigation of compressibility effects on dynamic stall of pitching airfoil. Phys. Fluids 29, 076104 (2017)CrossRef
92.
Zurück zum Zitat T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (Univ. Press, Hyderabad, India, 2004) T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (Univ. Press, Hyderabad, India, 2004)
93.
Zurück zum Zitat T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomena (Cambridge Univ. Press, USA, 2013)MATHCrossRef T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomena (Cambridge Univ. Press, USA, 2013)MATHCrossRef
94.
Zurück zum Zitat T.K. Sengupta, A. Bhole, N.A. Sreejith, Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)MathSciNetMATHCrossRef T.K. Sengupta, A. Bhole, N.A. Sreejith, Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)MathSciNetMATHCrossRef
95.
Zurück zum Zitat Sengupta, T. K. and Bhumkar, Y. G. Physical and spurious disturbances in computing and bypass transition (manuscript under preparation). (2009) Sengupta, T. K. and Bhumkar, Y. G. Physical and spurious disturbances in computing and bypass transition (manuscript under preparation). (2009)
96.
Zurück zum Zitat T.K. Sengupta, Y.G. Bhumkar, Direct numerical simulation of transition over a natural laminar flow airfoil. Frontiers in Aerospace Engineering 2(1), 39–52 (2013) T.K. Sengupta, Y.G. Bhumkar, Direct numerical simulation of transition over a natural laminar flow airfoil. Frontiers in Aerospace Engineering 2(1), 39–52 (2013)
97.
Zurück zum Zitat T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)CrossRef T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)CrossRef
98.
Zurück zum Zitat T.K. Sengupta, Y.G. Bhumkar, New explicit two-dimensional higher order filters. Comput. Fluids 39(10), 1848–1863 (2010)MATHCrossRef T.K. Sengupta, Y.G. Bhumkar, New explicit two-dimensional higher order filters. Comput. Fluids 39(10), 1848–1863 (2010)MATHCrossRef
99.
Zurück zum Zitat T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRef T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRef
100.
Zurück zum Zitat T.K. Sengupta, A. Dipankar, A.K. Rao, A new compact scheme for parallel computing using domain decomposition. J. Comput. Phys. 220, 654–677 (2007)MATHCrossRef T.K. Sengupta, A. Dipankar, A.K. Rao, A new compact scheme for parallel computing using domain decomposition. J. Comput. Phys. 220, 654–677 (2007)MATHCrossRef
101.
102.
Zurück zum Zitat T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comp. Phys. 192, 677–694 (2003)MATHCrossRef T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comp. Phys. 192, 677–694 (2003)MATHCrossRef
103.
Zurück zum Zitat T.K. Sengupta, T.T. Lim, S.V. Sajjan, S. Ganesh, J. Soria, Accelerated flow past a symmetric aerofoil: experiments and computations. J. Fluid Mech. 591, 255–288 (2007)MATHCrossRef T.K. Sengupta, T.T. Lim, S.V. Sajjan, S. Ganesh, J. Soria, Accelerated flow past a symmetric aerofoil: experiments and computations. J. Fluid Mech. 591, 255–288 (2007)MATHCrossRef
104.
Zurück zum Zitat T.K. Sengupta, M.K. Rajpoot, Y.G. Bhumkar, Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)MathSciNetMATHCrossRef T.K. Sengupta, M.K. Rajpoot, Y.G. Bhumkar, Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)MathSciNetMATHCrossRef
105.
106.
Zurück zum Zitat T.K. Sengupta, V. Vikas, A. Johri, An improved method for calculating flow past flapping and hovering airfoils. Theor. Comput. Fluid Dyn. 19(6), 417–440 (2005)MATHCrossRef T.K. Sengupta, V. Vikas, A. Johri, An improved method for calculating flow past flapping and hovering airfoils. Theor. Comput. Fluid Dyn. 19(6), 417–440 (2005)MATHCrossRef
107.
Zurück zum Zitat A.Y.N. Sofla, S.A. Meguid, K.T. Tan, W.K. Yea, Shape morphing of aircraft wing: status and challenges. J. Mater. Desg. 31, 1284–1292 (2010)CrossRef A.Y.N. Sofla, S.A. Meguid, K.T. Tan, W.K. Yea, Shape morphing of aircraft wing: status and challenges. J. Mater. Desg. 31, 1284–1292 (2010)CrossRef
108.
Zurück zum Zitat P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA J. 92–0439, (1992) P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA J. 92–0439, (1992)
109.
Zurück zum Zitat G.R. Srinivasan, J.D. Baeder, S. Obayashi, W.J. McCroskey, Flowfield of a lifting rotor in hover - A Navier-Stokes simulation. AIAA J. 30(10), 2371–2378 (1992)MATHCrossRef G.R. Srinivasan, J.D. Baeder, S. Obayashi, W.J. McCroskey, Flowfield of a lifting rotor in hover - A Navier-Stokes simulation. AIAA J. 30(10), 2371–2378 (1992)MATHCrossRef
110.
Zurück zum Zitat Srinivasan, G. R. and Baeder, J. D. TURNS: A free-wake Euler/Navier-Stokes numerical method for helicopter rotors. “Technical Notes”, AIAA J., 31(5), 959–962 (1993) Srinivasan, G. R. and Baeder, J. D. TURNS: A free-wake Euler/Navier-Stokes numerical method for helicopter rotors. “Technical Notes”, AIAA J., 31(5), 959–962 (1993)
111.
Zurück zum Zitat E. Stanewsky, Adaptive wing and flow control technology. Progress in Aerospace Sciences 37, 583–667 (2001)CrossRef E. Stanewsky, Adaptive wing and flow control technology. Progress in Aerospace Sciences 37, 583–667 (2001)CrossRef
112.
Zurück zum Zitat Suchandra, P. Direct Simulation of 2D Compressible Flow around Airfoil undergoing Pitching Oscillation. M. S. thesis, Department of Aerospace Engineering, IIT Kanpur (2015) Suchandra, P. Direct Simulation of 2D Compressible Flow around Airfoil undergoing Pitching Oscillation. M. S. thesis, Department of Aerospace Engineering, IIT Kanpur (2015)
113.
Zurück zum Zitat S. Teramoto, Large-eddy simulations of transitional boundary layer with impinging shock wave. AIAA J. 43, 2354–2364 (2005)CrossRef S. Teramoto, Large-eddy simulations of transitional boundary layer with impinging shock wave. AIAA J. 43, 2354–2364 (2005)CrossRef
114.
Zurück zum Zitat Tijdeman, H. Investigation of the transonic flow around oscillating airfoils. National Aerospace Lab. Amsterdam, Netherlands, TR–77-090U (1977) Tijdeman, H. Investigation of the transonic flow around oscillating airfoils. National Aerospace Lab. Amsterdam, Netherlands, TR–77-090U (1977)
115.
Zurück zum Zitat H. Tijdeman, R. Seebass, Transonic flow past oscillating airfoils. Ann. Rev. Fluid Mech. 12, 181–222 (1980)MATHCrossRef H. Tijdeman, R. Seebass, Transonic flow past oscillating airfoils. Ann. Rev. Fluid Mech. 12, 181–222 (1980)MATHCrossRef
116.
Zurück zum Zitat Thu, A. M., Jeon, S. E., Byun, Y. H. and Park, S. H. Dynamic stall vortex formation of OA-209 airfoil at low Reynolds number. World Academy of Science, Engineering and Technology, Int. J. Mech., Aerospace, Industrial and Mechatronics Engineering, 8(2) (2014) Thu, A. M., Jeon, S. E., Byun, Y. H. and Park, S. H. Dynamic stall vortex formation of OA-209 airfoil at low Reynolds number. World Academy of Science, Engineering and Technology, Int. J. Mech., Aerospace, Industrial and Mechatronics Engineering, 8(2) (2014)
117.
Zurück zum Zitat Visbal, M. R. Dynamic stall of a constant-rate pitching airfoil. AIAA 26th Aerospace Sciences Meeting, 88–0132 (1988) Visbal, M. R. Dynamic stall of a constant-rate pitching airfoil. AIAA 26th Aerospace Sciences Meeting, 88–0132 (1988)
118.
Zurück zum Zitat M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–85 (2002)MathSciNetMATHCrossRef M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–85 (2002)MathSciNetMATHCrossRef
119.
Zurück zum Zitat Xiao, Q., Tsai, H. M. and Liu, F. Computation of shock induced separated flow with a lagged \(k-\omega \) turbulence model. AIAA 2003–3464, AIAA (2003) Xiao, Q., Tsai, H. M. and Liu, F. Computation of shock induced separated flow with a lagged \(k-\omega \) turbulence model. AIAA 2003–3464, AIAA (2003)
120.
Zurück zum Zitat Q. Xiao, H.M. Tsai, F. Liu, Numerical study of transonic buffet over a supercritical airfoil. AIAA J. 44, 620–628 (2006)CrossRef Q. Xiao, H.M. Tsai, F. Liu, Numerical study of transonic buffet over a supercritical airfoil. AIAA J. 44, 620–628 (2006)CrossRef
Metadaten
Titel
Computational Compressible Aerodynamics
verfasst von
Tapan K. Sengupta
Yogesh G. Bhumkar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4284-8_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.