Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2011

01.10.2011

Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

verfasst von: M. Grujicic, G. Arakere, C.-F. Yen, B. A. Cheeseman

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A fully coupled thermo-mechanical finite-element analysis of the friction-stir welding (FSW) process developed in our previous work is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy) and AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure-evolution processes taking place during FSW are extensive plastic deformation and dynamic re-crystallization of highly deformed material subjected to elevated temperatures approaching the melting temperature. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution, and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness throughout the various FSW zones of the two alloys. The computed results are found to be in reasonably good agreement with their experimental counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456,” MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992 “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456,” MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992
2.
Zurück zum Zitat A. Cho, Alcan Rolled Products, Ravenswood, WV, Private Communication, June 2009 A. Cho, Alcan Rolled Products, Ravenswood, WV, Private Communication, June 2009
3.
Zurück zum Zitat “Armor Plate, Aluminum Alloy, 7039,” MIL-DTL-46063H, U.S. Department of Defense, Washington DC, December 1992 “Armor Plate, Aluminum Alloy, 7039,” MIL-DTL-46063H, U.S. Department of Defense, Washington DC, December 1992
4.
Zurück zum Zitat “Aluminum Alloy Armor, 2219, Rolled Plate and Die Forged Shapes,” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, August 1998 “Aluminum Alloy Armor, 2219, Rolled Plate and Die Forged Shapes,” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, August 1998
5.
Zurück zum Zitat “Aluminum Alloy Armor Rolled Plate (1/2 to 4 Inches Thick), Weldable (Alloy 2519),” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, February 2000 “Aluminum Alloy Armor Rolled Plate (1/2 to 4 Inches Thick), Weldable (Alloy 2519),” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, February 2000
6.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991 W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991
7.
Zurück zum Zitat C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52 C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52
8.
Zurück zum Zitat W.M. Thomas and R.E. Dolby, Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, and J.M. Vitek, Ed., ASM International, Materials Park, OH, 2003, p 203–211 W.M. Thomas and R.E. Dolby, Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, and J.M. Vitek, Ed., ASM International, Materials Park, OH, 2003, p 203–211
9.
Zurück zum Zitat J.H. Cho, D.E. Boyce, and P.R. Dawson, Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 146–163CrossRef J.H. Cho, D.E. Boyce, and P.R. Dawson, Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 146–163CrossRef
10.
Zurück zum Zitat H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRef H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRef
11.
Zurück zum Zitat W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRef W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRef
12.
Zurück zum Zitat W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRef W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRef
13.
Zurück zum Zitat J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRef J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRef
14.
Zurück zum Zitat O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRef O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRef
15.
Zurück zum Zitat M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964CrossRef M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964CrossRef
16.
Zurück zum Zitat C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36, p 69–75CrossRef C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36, p 69–75CrossRef
17.
Zurück zum Zitat G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scr. Mater., 1997, 37, p 355–361CrossRef G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scr. Mater., 1997, 37, p 355–361CrossRef
18.
Zurück zum Zitat K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scr. Mater., 2000, 43, p 743–748CrossRef K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scr. Mater., 2000, 43, p 743–748CrossRef
19.
Zurück zum Zitat K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa, Experimental Simulation of Recrystallized Microstructure in Friction Stir Welded Al Alloy Using a Plane-Strain Compression Test, Scr. Mater., 2008, 58, p 355–360CrossRef K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa, Experimental Simulation of Recrystallized Microstructure in Friction Stir Welded Al Alloy Using a Plane-Strain Compression Test, Scr. Mater., 2008, 58, p 355–360CrossRef
20.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, and C. J. Dawes, Friction Stir Welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991 W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, and C. J. Dawes, Friction Stir Welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991
21.
Zurück zum Zitat R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50, p 1–78CrossRef R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50, p 1–78CrossRef
22.
Zurück zum Zitat H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRef H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRef
23.
Zurück zum Zitat A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, 426–432, p 2999–3004CrossRef A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, 426–432, p 2999–3004CrossRef
24.
Zurück zum Zitat H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scr. Mater., 2002, 46, p 337–342CrossRef H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scr. Mater., 2002, 46, p 337–342CrossRef
25.
Zurück zum Zitat H.J. Liu, Y.C. Chen, and J.C. Feng, Effect of Zigzag Line on the Mechanical Properties of Friction Stir Welded Joints of an Al-Cu Alloy, Scr. Mater., 2006, 55, p 231–234CrossRef H.J. Liu, Y.C. Chen, and J.C. Feng, Effect of Zigzag Line on the Mechanical Properties of Friction Stir Welded Joints of an Al-Cu Alloy, Scr. Mater., 2006, 55, p 231–234CrossRef
26.
Zurück zum Zitat Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the Microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278CrossRef Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the Microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278CrossRef
27.
Zurück zum Zitat M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2009, 224(4), p 609–622CrossRef M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2009, 224(4), p 609–622CrossRef
28.
Zurück zum Zitat M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 14(5), p 672–684CrossRef M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 14(5), p 672–684CrossRef
29.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B. A. Cheeseman, Development of a Robust and Cost-effective Friction Stir Welding Process for Use in Advanced Military Vehicles, J. Mater. Eng. Perform., 2010. doi:10.1007/s11665-010-9650-0 M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B. A. Cheeseman, Development of a Robust and Cost-effective Friction Stir Welding Process for Use in Advanced Military Vehicles, J. Mater. Eng. Perform., 2010. doi:10.​1007/​s11665-010-9650-0
30.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., April 2010, accepted M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., April 2010, accepted
31.
Zurück zum Zitat A. Cho and B. Bes, Damage Tolerance Capability of an Al-Cu-Mg-Ag Al2139 Aluminum Alloys, Mater. Sci. Forum, 2006, 519–521, p 603–608CrossRef A. Cho and B. Bes, Damage Tolerance Capability of an Al-Cu-Mg-Ag Al2139 Aluminum Alloys, Mater. Sci. Forum, 2006, 519–521, p 603–608CrossRef
32.
Zurück zum Zitat R.J. Chester and I.J. Polmear, “Precipitation in Al-Cu-Mg-Ag Alloys,” The Metallurgy of Light Alloys, The Institution of Metallurgists, London, 1983, p 75–81 R.J. Chester and I.J. Polmear, “Precipitation in Al-Cu-Mg-Ag Alloys,” The Metallurgy of Light Alloys, The Institution of Metallurgists, London, 1983, p 75–81
33.
Zurück zum Zitat R.J. Chester and I.J. Polmear, TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys, Micron, 1980, 11, p 311–312 R.J. Chester and I.J. Polmear, TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys, Micron, 1980, 11, p 311–312
34.
Zurück zum Zitat I.J. Polmear and R.J. Chester, Abnormal Age Hardening in an Al-Cu-Mg Alloy Containing Silver and Lithium, Scr. Metall., 1989, 23, p 1213–1218CrossRef I.J. Polmear and R.J. Chester, Abnormal Age Hardening in an Al-Cu-Mg Alloy Containing Silver and Lithium, Scr. Metall., 1989, 23, p 1213–1218CrossRef
35.
Zurück zum Zitat B.M. Gable, G.J. Shiflet et al., The Effect of Si Additions on Omega Precipitation in Al-Cu-Mg-(Ag) Alloys, Scr. Mater., 2004, 50, p 149–153CrossRef B.M. Gable, G.J. Shiflet et al., The Effect of Si Additions on Omega Precipitation in Al-Cu-Mg-(Ag) Alloys, Scr. Mater., 2004, 50, p 149–153CrossRef
36.
Zurück zum Zitat S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215CrossRef S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215CrossRef
37.
Zurück zum Zitat L. Del Castillo and E.J. Lavernia, Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, 31, p 2287–2298CrossRef L. Del Castillo and E.J. Lavernia, Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, 31, p 2287–2298CrossRef
38.
Zurück zum Zitat K.M. Knowles and W.M. Stobbs, The Structure of (111) Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys, Acta Crystallogr. B Struct. Sci., 1988, 44, p 207–227CrossRef K.M. Knowles and W.M. Stobbs, The Structure of (111) Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys, Acta Crystallogr. B Struct. Sci., 1988, 44, p 207–227CrossRef
39.
Zurück zum Zitat A.M. Zahra and C.Y. Zahra, Effects of Minor Additions of Mg and Ag on Precipitation Phenomena in Al-4 Mass% Cu, Philos. Mag., 2004, 84, p 2521–2541CrossRef A.M. Zahra and C.Y. Zahra, Effects of Minor Additions of Mg and Ag on Precipitation Phenomena in Al-4 Mass% Cu, Philos. Mag., 2004, 84, p 2521–2541CrossRef
40.
Zurück zum Zitat O. Beffort, C. Solenthaler et al., Improvement of Strength and Fracture-Toughness of a Spray-Deposited Al-Cu-Mg-Ag-Mn-Ti-Zr Alloy by Optimized Heat-Treatments and Thermomechanical Treatments, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 1995, 191, p 113–120 O. Beffort, C. Solenthaler et al., Improvement of Strength and Fracture-Toughness of a Spray-Deposited Al-Cu-Mg-Ag-Mn-Ti-Zr Alloy by Optimized Heat-Treatments and Thermomechanical Treatments, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 1995, 191, p 113–120
41.
Zurück zum Zitat D. Vaughan, Grain Boundary Precipitation in an Al-Cu Alloy, Acta Metall., 1968, 16, p 563–577CrossRef D. Vaughan, Grain Boundary Precipitation in an Al-Cu Alloy, Acta Metall., 1968, 16, p 563–577CrossRef
42.
Zurück zum Zitat W.M. Lee, Dynamic Microstructural Characterization of High Strength Aluminum Alloys, Master’s Thesis, North Carolina State University, 2008 W.M. Lee, Dynamic Microstructural Characterization of High Strength Aluminum Alloys, Master’s Thesis, North Carolina State University, 2008
43.
Zurück zum Zitat K. Hono, N. Sano et al., Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys, Acta Metall. Mater., 1993, 41, p 829–838CrossRef K. Hono, N. Sano et al., Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys, Acta Metall. Mater., 1993, 41, p 829–838CrossRef
44.
Zurück zum Zitat S.P. Ringer and K. Hono, Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies, Mater. Charact., 2000, 44, p 101–131CrossRef S.P. Ringer and K. Hono, Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies, Mater. Charact., 2000, 44, p 101–131CrossRef
45.
Zurück zum Zitat A. Garg, Y.C. Chang et al., Precipitation of the Omega-Phase in an Al-4.0Cu-0.5Mg Alloy, Scr. Metall. Mater., 1990, 24, p 677–680CrossRef A. Garg, Y.C. Chang et al., Precipitation of the Omega-Phase in an Al-4.0Cu-0.5Mg Alloy, Scr. Metall. Mater., 1990, 24, p 677–680CrossRef
46.
Zurück zum Zitat ABAQUS Version 6.8-1, User Documentation, Dassault Systems, 2008 ABAQUS Version 6.8-1, User Documentation, Dassault Systems, 2008
47.
Zurück zum Zitat G.R. Johnson and W.H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” Proceedings of the 7th International Symposium on Ballistics, 1983 G.R. Johnson and W.H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” Proceedings of the 7th International Symposium on Ballistics, 1983
48.
Zurück zum Zitat L.E. Svensson, L. Karlsson, H. Larsson et al., Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloys with Special Reference to AA 5083 and AA 6082, Sci. Technol. Weld. Join., 2000, 5, p 285–296CrossRef L.E. Svensson, L. Karlsson, H. Larsson et al., Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloys with Special Reference to AA 5083 and AA 6082, Sci. Technol. Weld. Join., 2000, 5, p 285–296CrossRef
49.
Zurück zum Zitat R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, MA, 1994 R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, MA, 1994
50.
Zurück zum Zitat Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., 2003, A354, p 298–305 Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., 2003, A354, p 298–305
51.
Zurück zum Zitat I. Charit and R.S. Mishra, Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloy, J. Mater. Res., 2004, 19, p 3329–3342CrossRef I. Charit and R.S. Mishra, Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloy, J. Mater. Res., 2004, 19, p 3329–3342CrossRef
52.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, J. Mater. Eng. Perform., 2010. doi:10.1007/s11665-010-9725-y M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, J. Mater. Eng. Perform., 2010. doi:10.​1007/​s11665-010-9725-y
53.
Zurück zum Zitat K. Kannan, J.S. Vetrano, and C.H. Hamilton, Effects of Alloy Modification and Thermomechanical Processing on Recrystallization of Al-Mg-Mn Alloys, Metall. Mater. Trans., 1996, 27A, p 2947–2957CrossRef K. Kannan, J.S. Vetrano, and C.H. Hamilton, Effects of Alloy Modification and Thermomechanical Processing on Recrystallization of Al-Mg-Mn Alloys, Metall. Mater. Trans., 1996, 27A, p 2947–2957CrossRef
54.
Zurück zum Zitat M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef
55.
Zurück zum Zitat Y.S. Sato, S. Hwan, C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32A, p 3033–3042CrossRef Y.S. Sato, S. Hwan, C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32A, p 3033–3042CrossRef
56.
Zurück zum Zitat D. Allehaux and F. Marie, Mechanical and Corrosion Behavior of the 2139 Aluminum-Copper-Alloy Welded by the Friction Stir Welding Using the Bobbin Tool Technique, Mater. Sci. Forum, 2006, 519–521, p 1131–1138CrossRef D. Allehaux and F. Marie, Mechanical and Corrosion Behavior of the 2139 Aluminum-Copper-Alloy Welded by the Friction Stir Welding Using the Bobbin Tool Technique, Mater. Sci. Forum, 2006, 519–521, p 1131–1138CrossRef
57.
Zurück zum Zitat L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain-Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRef L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain-Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRef
Metadaten
Titel
Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys
verfasst von
M. Grujicic
G. Arakere
C.-F. Yen
B. A. Cheeseman
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2011
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-010-9741-y

Weitere Artikel der Ausgabe 7/2011

Journal of Materials Engineering and Performance 7/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.