Skip to main content

2021 | OriginalPaper | Buchkapitel

6. Computational Meshing for CFD Simulations

verfasst von : Andreas Lintermann

Erschienen in: Clinical and Biomedical Engineering in the Human Nose

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In CFD modelling, small cells or elements are created to fill this volume. They constitute a mesh where each cell represents a discrete space that represents the flow locally. Mathematical equations that represent the flow physics are then applied to each cell of the mesh. Generating a high quality mesh is extremely important to obtain reliable solutions and to guarantee numerical stability. This chapter begins with a basic introduction to a typical workflow and guidelines for generating high quality meshes, and concludes with some more advanced topics, i.e., how to generate meshes in parallel, a discussion on mesh quality, and examples on the application of lattice-Boltzmann methods to simulate flow without any turbulence modelling on highly-resolved meshes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A large number of grid generation software and open source codes exist with a listing of some available software given in the appendix.
 
2
HERMIT is the predecessor of the currently installed HAZEL HEN system at HLRS Stuttgart.
 
3
JUQUEEN is the predecessor of the currently installed JUWELS system at JSC.
 
Literatur
1.
Zurück zum Zitat K. Bass, P. Worth Longest, Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J. Aerosol Sci. 119, 31–50 (2018) K. Bass, P. Worth Longest, Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J. Aerosol Sci. 119, 31–50 (2018)
2.
Zurück zum Zitat R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)CrossRef R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)CrossRef
3.
Zurück zum Zitat P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)
4.
Zurück zum Zitat J. Bonet, J. Peraire, An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int. J. Numer. Methods Eng. 31(1), 1–17 (1991)MATHCrossRef J. Bonet, J. Peraire, An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int. J. Numer. Methods Eng. 31(1), 1–17 (1991)MATHCrossRef
5.
Zurück zum Zitat M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)MATHCrossRef M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)MATHCrossRef
6.
Zurück zum Zitat C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetMATHCrossRef C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetMATHCrossRef
7.
Zurück zum Zitat M.O. Cetin, V. Pauz, M. Meinke, W. Schröder, Computational analysis of nozzle geometry variations for subsonic turbulent jets. Comput. Fluids 136, 467–484 (2016)MathSciNetMATHCrossRef M.O. Cetin, V. Pauz, M. Meinke, W. Schröder, Computational analysis of nozzle geometry variations for subsonic turbulent jets. Comput. Fluids 136, 467–484 (2016)MathSciNetMATHCrossRef
8.
Zurück zum Zitat D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. Ser. A, Math., Phys., Eng. Sci. 360(1792), 437–451 (2002) D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. Ser. A, Math., Phys., Eng. Sci. 360(1792), 437–451 (2002)
9.
Zurück zum Zitat A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys. Rev. E 67(6), 1–7 (2003)CrossRef A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys. Rev. E 67(6), 1–7 (2003)CrossRef
10.
Zurück zum Zitat N. Filipovic, Chapter 8 - Computational modeling of dry-powder inhalers for pulmonary drug delivery (Academic Press, Cambridge, 2020) N. Filipovic, Chapter 8 - Computational modeling of dry-powder inhalers for pulmonary drug delivery (Academic Press, Cambridge, 2020)
11.
Zurück zum Zitat M. Folk, E. Pourmal, Balancing performance and preservation lessons learned with HDF5, in Proceedings of the 2010 Roadmap for Digital Preservation Interoperability Framework Workshop on - US-DPIF ’10 (2010), pp. 1–8 M. Folk, E. Pourmal, Balancing performance and preservation lessons learned with HDF5, in Proceedings of the 2010 Roadmap for Digital Preservation Interoperability Framework Workshop on - US-DPIF ’10 (2010), pp. 1–8
12.
Zurück zum Zitat D.O. Frank-Ito, M. Wofford, J.D. Schroeter, J.S. Kimbell, Influence of mesh density on airflow and particle deposition in sinonasal airway modeling. J. Aerosol. Med. Pulm. Drug Deliv. (2015) D.O. Frank-Ito, M. Wofford, J.D. Schroeter, J.S. Kimbell, Influence of mesh density on airflow and particle deposition in sinonasal airway modeling. J. Aerosol. Med. Pulm. Drug Deliv. (2015)
13.
Zurück zum Zitat M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgridâscaleeddy viscosity model. Phys. Fluids A: Fluid Dyn. 3(7), 1760–1765 (1991)MATHCrossRef M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgridâscaleeddy viscosity model. Phys. Fluids A: Fluid Dyn. 3(7), 1760–1765 (1991)MATHCrossRef
14.
Zurück zum Zitat I. Ginzburg, D. D’Humières, Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)MathSciNetCrossRef I. Ginzburg, D. D’Humières, Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)MathSciNetCrossRef
15.
Zurück zum Zitat H. Grotjans, F. Menter, Wall functions for industrial applications, in Computational Fluid Dynamics ’98, ECCOMAS (1998), ed. by K. Papailiou (Wiley, Hoboken, 1998), pp. 1112–1117 H. Grotjans, F. Menter, Wall functions for industrial applications, in Computational Fluid Dynamics ’98, ECCOMAS (1998), ed. by K. Papailiou (Wiley, Hoboken, 1998), pp. 1112–1117
16.
Zurück zum Zitat Z. Guo, B. Shi, C. Zheng, A coupled lattice BGK model for the Boussinesq equations. Int. J. Numer. Methods Fluids 39(4), 325–342 (2002)MathSciNetMATHCrossRef Z. Guo, B. Shi, C. Zheng, A coupled lattice BGK model for the Boussinesq equations. Int. J. Numer. Methods Fluids 39(4), 325–342 (2002)MathSciNetMATHCrossRef
17.
Zurück zum Zitat I. Hörschler, M. Meinke, W. Schröder, Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32(1), 39–45 (2003)MATHCrossRef I. Hörschler, M. Meinke, W. Schröder, Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32(1), 39–45 (2003)MATHCrossRef
18.
Zurück zum Zitat I. Hörschler, W. Schröder, M. Meinke, On the assumption of steadiness of nasal cavity flow. J. Biomech. 43(6), 1081–5 (2010)CrossRef I. Hörschler, W. Schröder, M. Meinke, On the assumption of steadiness of nasal cavity flow. J. Biomech. 43(6), 1081–5 (2010)CrossRef
19.
Zurück zum Zitat S. Hou, J. Sterling, S. Chen, G.D. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows. Pattern Form. Lattice Gas Autom. 6, 1–18 (1994) S. Hou, J. Sterling, S. Chen, G.D. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows. Pattern Form. Lattice Gas Autom. 6, 1–18 (1994)
20.
Zurück zum Zitat K. Inthavong, A. Chetty, Y. Shang, J. Tu, Examining mesh independence for flow dynamics in the human nasal cavity. Comput. Biol. Med. 102, 40–50 (2018)CrossRef K. Inthavong, A. Chetty, Y. Shang, J. Tu, Examining mesh independence for flow dynamics in the human nasal cavity. Comput. Biol. Med. 102, 40–50 (2018)CrossRef
21.
Zurück zum Zitat T. Isaac, C. Burstedde, O. Ghattas, Low-cost parallel algorithms for 2:1 octree balance, in 2012 IEEE 26th International Parallel and Distributed Processing Symposium (IEEE, 2012), pp. 426–437 T. Isaac, C. Burstedde, O. Ghattas, Low-cost parallel algorithms for 2:1 octree balance, in 2012 IEEE 26th International Parallel and Distributed Processing Symposium (IEEE, 2012), pp. 426–437
22.
Zurück zum Zitat T. Ishida, S. Takahashi, K. Nakahashi, Efficient and robust cartesian mesh generation for building-cube method. J. Comput. Sci. Technol. 2(4), 435–446 (2008)CrossRef T. Ishida, S. Takahashi, K. Nakahashi, Efficient and robust cartesian mesh generation for building-cube method. J. Comput. Sci. Technol. 2(4), 435–446 (2008)CrossRef
23.
Zurück zum Zitat Y. Kuwata, K. Suga, Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetMATHCrossRef Y. Kuwata, K. Suga, Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563–569 (2015)MathSciNetMATHCrossRef
24.
Zurück zum Zitat P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)MathSciNetCrossRef P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)MathSciNetCrossRef
25.
Zurück zum Zitat B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)MATHCrossRef B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)MATHCrossRef
26.
Zurück zum Zitat J. Li, M. Zingale, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, Parallel netCDF: a high-performance scientific I/O interface, in Proceedings of the 2003 ACM/IEEE conference on Supercomputing - SC ’03 (ACM Press, New York, USA, 2003), p. 39 J. Li, M. Zingale, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, Parallel netCDF: a high-performance scientific I/O interface, in Proceedings of the 2003 ACM/IEEE conference on Supercomputing - SC ’03 (ACM Press, New York, USA, 2003), p. 39
27.
Zurück zum Zitat A. Lintermann, Efficient parallel geometry distribution for the simulation of complex flows, in Proceedings of the VII ECCOMAS Congress 2016 (Athens, 2016). Technical University of Athens (NTUA) Greece, pp. 1277–1293 A. Lintermann, Efficient parallel geometry distribution for the simulation of complex flows, in Proceedings of the VII ECCOMAS Congress 2016 (Athens, 2016). Technical University of Athens (NTUA) Greece, pp. 1277–1293
28.
Zurück zum Zitat A. Lintermann, G. Eitel-Amor, M. Meinke, W. Schröder, Lattice-Boltzmann solutions with local grid refinement for nasal cavity flows. New results in numerical and experimental fluid mechanics VIII (Springer, Berlin, 2013), pp. 583–590 A. Lintermann, G. Eitel-Amor, M. Meinke, W. Schröder, Lattice-Boltzmann solutions with local grid refinement for nasal cavity flows. New results in numerical and experimental fluid mechanics VIII (Springer, Berlin, 2013), pp. 583–590
29.
Zurück zum Zitat A. Lintermann, M. Meinke, W. Schröder, Investigations of the inspiration and heating capability of the human nasal cavity based on a lattice-boltzmann method, in Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011) (Belgium, Brussels, 2011) A. Lintermann, M. Meinke, W. Schröder, Investigations of the inspiration and heating capability of the human nasal cavity based on a lattice-boltzmann method, in Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011) (Belgium, Brussels, 2011)
30.
Zurück zum Zitat A. Lintermann, M. Meinke, W. Schröder, Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput. Biol. Med. 43(11), 1833–1852 (2013)CrossRef A. Lintermann, M. Meinke, W. Schröder, Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput. Biol. Med. 43(11), 1833–1852 (2013)CrossRef
31.
Zurück zum Zitat A. Lintermann, M. Meinke, W. Schröder, Zonal flow solver (ZFS): a highly efficient multi-physics simulation framework. Int. J. Comput. Fluid Dyn., 1–28 (2020) A. Lintermann, M. Meinke, W. Schröder, Zonal flow solver (ZFS): a highly efficient multi-physics simulation framework. Int. J. Comput. Fluid Dyn., 1–28 (2020)
32.
Zurück zum Zitat A. Lintermann, D. Pleiter, W. Schröder, Performance of ODROID-MC1 for scientific flow problems. Futur. Gener. Comput. Syst. 95, 149–162 (2019)CrossRef A. Lintermann, D. Pleiter, W. Schröder, Performance of ODROID-MC1 for scientific flow problems. Futur. Gener. Comput. Syst. 95, 149–162 (2019)CrossRef
33.
Zurück zum Zitat A. Lintermann, S. Schlimpert, J. Grimmen, C. Günther, M. Meinke, W. Schröder, Massively parallel grid generation on HPC systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)MathSciNetMATHCrossRef A. Lintermann, S. Schlimpert, J. Grimmen, C. Günther, M. Meinke, W. Schröder, Massively parallel grid generation on HPC systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)MathSciNetMATHCrossRef
34.
Zurück zum Zitat A. Lintermann, W. Schröder, A hierarchical numerical journey through the nasal cavity: from nose-like models to real anatomies. Flow, Turbul. Combust. (2017) A. Lintermann, W. Schröder, A hierarchical numerical journey through the nasal cavity: from nose-like models to real anatomies. Flow, Turbul. Combust. (2017)
35.
Zurück zum Zitat A. Lintermann, W. Schröder, Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur. J. Mech.-B/Fluids 63, 73–89 (2017) A. Lintermann, W. Schröder, Simulation of aerosol particle deposition in the upper human tracheobronchial tract. Eur. J. Mech.-B/Fluids 63, 73–89 (2017)
36.
Zurück zum Zitat A. Loseille, V. Menier, F. Alauzet, Parallel generation of large-size adapted meshes. Procedia Eng. 124, 57–69 (2015)CrossRef A. Loseille, V. Menier, F. Alauzet, Parallel generation of large-size adapted meshes. Procedia Eng. 124, 57–69 (2015)CrossRef
37.
Zurück zum Zitat F. Menter, Zonal two equation k-\(\omega \) turbulence models for aerodynamic flows, in 24th AIAA Fluid Dynamics Conference (Orlando, FL, USA, 1993), pp. AIAA paper 93–2906 F. Menter, Zonal two equation k-\(\omega \) turbulence models for aerodynamic flows, in 24th AIAA Fluid Dynamics Conference (Orlando, FL, USA, 1993), pp. AIAA paper 93–2906
38.
Zurück zum Zitat T. Nakashima, M. Tsubokura, M. Vázquez, H.C. Owen, Y. Doi, Coupled analysis of unsteady aerodynamics and vehicle motion of a heavy-duty truck in wind gusts. Comput. Fluids 80, 1–9 (2012) T. Nakashima, M. Tsubokura, M. Vázquez, H.C. Owen, Y. Doi, Coupled analysis of unsteady aerodynamics and vehicle motion of a heavy-duty truck in wind gusts. Comput. Fluids 80, 1–9 (2012)
39.
Zurück zum Zitat H. Nishikawa, B. Diskin, Development and application of parallel agglomerated multigrid methods for complex geometries, in 20th AIAA Computational Fluid Dynamics Conference (Hawaii, Honolulu, 2011), pp. 27–30 H. Nishikawa, B. Diskin, Development and application of parallel agglomerated multigrid methods for complex geometries, in 20th AIAA Computational Fluid Dynamics Conference (Hawaii, Honolulu, 2011), pp. 27–30
40.
Zurück zum Zitat M. Peric, Flow simulation using control volumes of arbitrary polyhedral shape. ERCOFTAC Bulletin, No. 62 (2004) M. Peric, Flow simulation using control volumes of arbitrary polyhedral shape. ERCOFTAC Bulletin, No. 62 (2004)
41.
Zurück zum Zitat A. Pogorelov, M. Meinke, W. Schröder, large-eddy simulation of the unsteady full 3d rim seal flow in a one-stage axial-flow turbine. Flow, Turbul. Combust. (2018) A. Pogorelov, M. Meinke, W. Schröder, large-eddy simulation of the unsteady full 3d rim seal flow in a one-stage axial-flow turbine. Flow, Turbul. Combust. (2018)
42.
Zurück zum Zitat A. Pogorelov, L. Schneiders, M. Meinke, W. Schröder, An adaptive cartesian mesh based method to simulate turbulent flows of multiple rotating surfaces. Flow Turbul. Combust. 100(1), 19–38 (2018) A. Pogorelov, L. Schneiders, M. Meinke, W. Schröder, An adaptive cartesian mesh based method to simulate turbulent flows of multiple rotating surfaces. Flow Turbul. Combust. 100(1), 19–38 (2018)
43.
Zurück zum Zitat Y.H. Qian, D. D’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation. Europhys. Lett. (EPL) 17(6), 479–484 (1992)MATHCrossRef Y.H. Qian, D. D’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation. Europhys. Lett. (EPL) 17(6), 479–484 (1992)MATHCrossRef
44.
Zurück zum Zitat L. Richardson, On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Proc. R. Soc. London. Ser. A 83, 335–336 (1910) L. Richardson, On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Proc. R. Soc. London. Ser. A 83, 335–336 (1910)
45.
Zurück zum Zitat P. Roache, Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116, 405–413 (1994)CrossRef P. Roache, Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116, 405–413 (1994)CrossRef
46.
Zurück zum Zitat H. Sagan, Space-filling curves, 1st edn. (Universitext. Springer,New York, 1994) H. Sagan, Space-filling curves, 1st edn. (Universitext. Springer,New York, 1994)
47.
Zurück zum Zitat B. Saint-Vernant, L. Wantzel, Mémoire et expérience sur l’écoulement déterminé par des différences de pressions considérables. Journal de l’École Polytechnique H 27, 85ff (1839) B. Saint-Vernant, L. Wantzel, Mémoire et expérience sur l’écoulement déterminé par des différences de pressions considérables. Journal de l’École Polytechnique H 27, 85ff (1839)
48.
Zurück zum Zitat L. Schneiders, J.H. Grimmen, M. Meinke, W. Schröder, An efficient numerical method for fully-resolved particle simulations on high-performance computers, in Proceedings in Applied Mathematics and Mechanics (Lecce, Italy, 2015), GAMM, Ed., Wiley-VCH L. Schneiders, J.H. Grimmen, M. Meinke, W. Schröder, An efficient numerical method for fully-resolved particle simulations on high-performance computers, in Proceedings in Applied Mathematics and Mechanics (Lecce, Italy, 2015), GAMM, Ed., Wiley-VCH
49.
Zurück zum Zitat L. Schneiders, C. Günther, M. Meinke, W. Schröder, An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetMATHCrossRef L. Schneiders, C. Günther, M. Meinke, W. Schröder, An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetMATHCrossRef
50.
Zurück zum Zitat L. Schneiders, M. Meinke, W. Schröder, Direct particleâfluid simulation ofKolmogorov-length-scale size particles in decaying isotropicturbulence. J. Fluid Mech. 819, 188–227 (2017)MathSciNetMATHCrossRef L. Schneiders, M. Meinke, W. Schröder, Direct particleâfluid simulation ofKolmogorov-length-scale size particles in decaying isotropicturbulence. J. Fluid Mech. 819, 188–227 (2017)MathSciNetMATHCrossRef
51.
Zurück zum Zitat J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963) J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)
52.
Zurück zum Zitat J.F. Thompson, B.K. Soni, N.P. Weatherill, Handbook of grid generation (Taylor & Francis Inc., CRC Press, 1998)MATHCrossRef J.F. Thompson, B.K. Soni, N.P. Weatherill, Handbook of grid generation (Taylor & Francis Inc., CRC Press, 1998)MATHCrossRef
53.
Zurück zum Zitat J.F. Thompson, Z. Warsi, C.W. Mastin, Numerical grid generation: foundations and applications (Elsevier Science Pub. Co., New York, 1985)MATH J.F. Thompson, Z. Warsi, C.W. Mastin, Numerical grid generation: foundations and applications (Elsevier Science Pub. Co., New York, 1985)MATH
54.
Zurück zum Zitat S. Vinchurkar, P.W. Longest, Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput. Fluids 37, 317–331 (2008)MATHCrossRef S. Vinchurkar, P.W. Longest, Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput. Fluids 37, 317–331 (2008)MATHCrossRef
55.
Zurück zum Zitat M. Waldmann, A. Lintermann, Y.J. Choi, W. Schröder, Analysis of the effects of MARME treatment on respiratory flow using the lattice-Boltzmann method. New results in numerical and experimental fluid mechanics XII (2020), pp. 853–863 M. Waldmann, A. Lintermann, Y.J. Choi, W. Schröder, Analysis of the effects of MARME treatment on respiratory flow using the lattice-Boltzmann method. New results in numerical and experimental fluid mechanics XII (2020), pp. 853–863
56.
Zurück zum Zitat A.T. White, C.K. Chong, Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)MATHCrossRef A.T. White, C.K. Chong, Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230(16), 6367–6378 (2011)MATHCrossRef
57.
Zurück zum Zitat D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329–367 (2003)CrossRef D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329–367 (2003)CrossRef
Metadaten
Titel
Computational Meshing for CFD Simulations
verfasst von
Andreas Lintermann
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6716-2_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.