Skip to main content

2013 | OriginalPaper | Buchkapitel

Computational Modeling of Angiogenesis: Towards a Multi-Scale Understanding of Cell–Cell and Cell–Matrix Interactions

verfasst von : Sonja E. M. Boas, Margriet M. Palm, Pieter Koolwijk, Roeland M. H. Merks

Erschienen in: Mechanical and Chemical Signaling in Angiogenesis

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Combined with in vitro and in vivo experiments, mathematical and computational modeling are key to unraveling how mechanical and chemical signaling by endothelial cells coordinates their organization into capillary-like tubes. While in vitro and in vivo experiments can unveil the effects of, for example, environmental changes or gene knockouts, computational models provide a way to formalize and understand the mechanisms underlying these observations. This chapter reviews recent computational approaches to model angiogenesis, and discusses the insights they provide into the mechanisms of angiogenesis. We introduce a new cell-based computational model of an in vitro assay of angiogenic sprouting from endothelial monolayers in fibrin matrices. Endothelial cells are modeled by the Cellular Potts Model, combined with continuum descriptions to model haptotaxis and proteolysis of the extracellular matrix. The computational model demonstrates how a variety of cellular structural properties and behaviors determine the dynamics of tube formation. We aim to extend this model to a multi-scale model in the sense that cells, extracellular matrix and cell-regulation are described at different levels of detail and feedback on each other. Finally we discuss how computational modeling, combined with in vitro and in vivo modeling steers experiments, and how it generates new experimental hypotheses and insights on the mechanics of angiogenesis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koolwijk, P., van Erck, M., de Vree, W., Vermeer, M., Weich, H., Hanemaaijer, R., van Hinsbergh, V.: Cooperative effect of TNFalpha bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J. Cell Biol. 132(6), 1177–1188 (1996)CrossRef Koolwijk, P., van Erck, M., de Vree, W., Vermeer, M., Weich, H., Hanemaaijer, R., van Hinsbergh, V.: Cooperative effect of TNFalpha bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J. Cell Biol. 132(6), 1177–1188 (1996)CrossRef
2.
Zurück zum Zitat Anderson, A., Chaplain, M.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3), 109–114 (1998)CrossRefMATH Anderson, A., Chaplain, M.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3), 109–114 (1998)CrossRefMATH
3.
Zurück zum Zitat Manoussaki, D., Lubkin, S., Vemon, R., Murray, J.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44(3), 271–282 (1996)CrossRef Manoussaki, D., Lubkin, S., Vemon, R., Murray, J.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44(3), 271–282 (1996)CrossRef
4.
Zurück zum Zitat Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)CrossRefMathSciNet Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)CrossRefMathSciNet
5.
Zurück zum Zitat Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRef Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRef
7.
Zurück zum Zitat Szabó, A., Perryn, E., Czirok, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038102 (2007)CrossRef Szabó, A., Perryn, E., Czirok, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038102 (2007)CrossRef
8.
Zurück zum Zitat Jackson, T., Zheng, X.: A Cell-based Model of Endothelial Cell Migration Proliferation and Maturation During Corneal Angiogenesis. Bull. Math. Biol. (2010). doi:10.1007/s11538-009-9471-1 Jackson, T., Zheng, X.: A Cell-based Model of Endothelial Cell Migration Proliferation and Maturation During Corneal Angiogenesis. Bull. Math. Biol. (2010). doi:10.​1007/​s11538-009-9471-1
10.
Zurück zum Zitat Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model. Nat. Phenom. 5 (1) (2010). doi:10.1051/mmnp/20105105 Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model. Nat. Phenom. 5 (1) (2010). doi:10.​1051/​mmnp/​20105105
11.
Zurück zum Zitat Bauer, A., Jackson, T., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9), 3105–3121 (2007)CrossRef Bauer, A., Jackson, T., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9), 3105–3121 (2007)CrossRef
13.
Zurück zum Zitat Merks, R., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)CrossRef Merks, R., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)CrossRef
14.
Zurück zum Zitat Merks, R., Perryn, E., Shirinifard, A., Glazier, J.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)CrossRefMathSciNet Merks, R., Perryn, E., Shirinifard, A., Glazier, J.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)CrossRefMathSciNet
15.
Zurück zum Zitat Vernon, R., Angello, J., Iruela-Arispe, M., Lane, T., Sage, E.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536 (1992) Vernon, R., Angello, J., Iruela-Arispe, M., Lane, T., Sage, E.: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536 (1992)
16.
17.
Zurück zum Zitat Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11), 118101 (2003)CrossRef Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11), 118101 (2003)CrossRef
21.
Zurück zum Zitat Merks, R., Glazier, J.: A cell-centered approach to developmental biology. Phys. A 352(1), 113–130 (2005)CrossRef Merks, R., Glazier, J.: A cell-centered approach to developmental biology. Phys. A 352(1), 113–130 (2005)CrossRef
22.
Zurück zum Zitat Merks, R., Newman, S., Glazier, J.: Cell-oriented modeling of in vitro capillary development. In: Sloot, P., Chopard, B., Hoekstra, A. (eds.) Cellular Automata Lecture Notes in Computer Science, pp. 425–434. Springer Berlin, Heidelberg (2004) Merks, R., Newman, S., Glazier, J.: Cell-oriented modeling of in vitro capillary development. In: Sloot, P., Chopard, B., Hoekstra, A. (eds.) Cellular Automata Lecture Notes in Computer Science, pp. 425–434. Springer Berlin, Heidelberg (2004)
23.
Zurück zum Zitat Merks, R., Glazier, J.: Dynamic mechanisms of blood vessel growth. Nonlinearity 19(1), C1–C10 (2006) Merks, R., Glazier, J.: Dynamic mechanisms of blood vessel growth. Nonlinearity 19(1), C1–C10 (2006)
24.
Zurück zum Zitat Dejana, E.: Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004)CrossRef Dejana, E.: Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004)CrossRef
26.
Zurück zum Zitat Sholley, M., Ferguson, G., Seibel, H., Montour, J., Wilson, J.: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51(6), 624 (1984) Sholley, M., Ferguson, G., Seibel, H., Montour, J., Wilson, J.: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51(6), 624 (1984)
27.
Zurück zum Zitat Bauer, A., Jackson, T., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000, 445 (2009). doi:10.1371/journal.pcbi.1000445 Bauer, A., Jackson, T., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000, 445 (2009). doi:10.​1371/​journal.​pcbi.​1000445
28.
Zurück zum Zitat Hellström, M., Phng, L., Hofmann, J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A., Karlsson, L., Gaiano, N., Yoon, K., Rossant, J., Iruela-Arispe, M., Kalé n, M., Gerhardt, H., Betsholtz, C.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129), 776–80 (2007). doi:10.1038/nature05571 CrossRef Hellström, M., Phng, L., Hofmann, J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A., Karlsson, L., Gaiano, N., Yoon, K., Rossant, J., Iruela-Arispe, M., Kalé n, M., Gerhardt, H., Betsholtz, C.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129), 776–80 (2007). doi:10.​1038/​nature05571 CrossRef
29.
Zurück zum Zitat Bentley, K., Mariggi, G., Gerhardt, H., Bates, P.: Tipping the balance: robustness of tip cell selection migration and fusion in angiogenesis. PLoS Comput. Biol. 5(10), e1000549 (2009). doi:10.1371/journal.pcbi.1000549 Bentley, K., Mariggi, G., Gerhardt, H., Bates, P.: Tipping the balance: robustness of tip cell selection migration and fusion in angiogenesis. PLoS Comput. Biol. 5(10), e1000549 (2009). doi:10.​1371/​journal.​pcbi.​1000549
30.
Zurück zum Zitat Jakobsson, L., Franco, C., Bentley, K., Collins, R., Ponsioen, B., Aspalter, I., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010). doi:10.1038/ncb2103 CrossRef Jakobsson, L., Franco, C., Bentley, K., Collins, R., Ponsioen, B., Aspalter, I., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010). doi:10.​1038/​ncb2103 CrossRef
33.
Zurück zum Zitat Qutub, A., Mac Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. 28(2), 14–31 (2009)CrossRef Qutub, A., Mac Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. 28(2), 14–31 (2009)CrossRef
34.
Zurück zum Zitat Qutub, A., Popel, A.: Elongation proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1), 13 (2009)CrossRef Qutub, A., Popel, A.: Elongation proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3(1), 13 (2009)CrossRef
35.
Zurück zum Zitat Qutub, A., Liu, G., Vempati, P., Popel, A.: Integration of angiogenesis modules at multiple scales: from molecular to tissue. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, p. 316. NIH Public Access (2009) Qutub, A., Liu, G., Vempati, P., Popel, A.: Integration of angiogenesis modules at multiple scales: from molecular to tissue. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, p. 316. NIH Public Access (2009)
36.
Zurück zum Zitat Liu, G., Qutub, A., Vempati, P., Mac Gabhann, F., Popel, A.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Modell. 8(1), 6 (2011). doi:10.1186/1742-4682-8-6 CrossRef Liu, G., Qutub, A., Vempati, P., Mac Gabhann, F., Popel, A.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Modell. 8(1), 6 (2011). doi:10.​1186/​1742-4682-8-6 CrossRef
37.
38.
Zurück zum Zitat van Hinsbergh, V., Koolwijk, P.: Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res. 78(2), 203 (2008)CrossRef van Hinsbergh, V., Koolwijk, P.: Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res. 78(2), 203 (2008)CrossRef
39.
Zurück zum Zitat Glazier, J., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 47(3), 2128–2154 (1993)CrossRef Glazier, J., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 47(3), 2128–2154 (1993)CrossRef
40.
Zurück zum Zitat Graner, F., Glazier, J.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRef Graner, F., Glazier, J.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRef
41.
Zurück zum Zitat Swat, M., Hester, S., Heiland, R., Zaitlen, B., Glazier, J., Shirinifard, A.: CompuCell3D manual and tutorial version 3.6.0 (2011) Swat, M., Hester, S., Heiland, R., Zaitlen, B., Glazier, J., Shirinifard, A.: CompuCell3D manual and tutorial version 3.6.0 (2011)
43.
Zurück zum Zitat Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.: Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2(2), 153–166 (1998)CrossRef Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.: Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2(2), 153–166 (1998)CrossRef
44.
Zurück zum Zitat Weijers, E., van Wijhe, M., Joosten, L., Horrevoets, A., de Maat, M., van Hinsbergh, V., Koolwijk, P.: Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J. Thromb. Haemostasis 8(12), 2800–2809 (2010)CrossRef Weijers, E., van Wijhe, M., Joosten, L., Horrevoets, A., de Maat, M., van Hinsbergh, V., Koolwijk, P.: Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J. Thromb. Haemostasis 8(12), 2800–2809 (2010)CrossRef
45.
Zurück zum Zitat Montesano, R., Pepper, M., Möhle-Steinlein, U., Risau, W., Wagner, E., Orci, L.: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62(3), 435–445 (1990)CrossRef Montesano, R., Pepper, M., Möhle-Steinlein, U., Risau, W., Wagner, E., Orci, L.: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62(3), 435–445 (1990)CrossRef
46.
Zurück zum Zitat Kroon, M., Koolwijk, P., van Goor, H., Weidle, U., Collen, A., VanDer Pluijm, G., van Hinsbergh, V.: Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices. Am. J. Pathol. 154(6), 1731 (1999)CrossRef Kroon, M., Koolwijk, P., van Goor, H., Weidle, U., Collen, A., VanDer Pluijm, G., van Hinsbergh, V.: Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices. Am. J. Pathol. 154(6), 1731 (1999)CrossRef
47.
Zurück zum Zitat Kaijzel, E., Koolwijk, P., van Erck, M., van Hinsbergh, V., de Maat, M.: Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemostasis 4(9), 1975–1981 (2006)CrossRef Kaijzel, E., Koolwijk, P., van Erck, M., van Hinsbergh, V., de Maat, M.: Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemostasis 4(9), 1975–1981 (2006)CrossRef
Metadaten
Titel
Computational Modeling of Angiogenesis: Towards a Multi-Scale Understanding of Cell–Cell and Cell–Matrix Interactions
verfasst von
Sonja E. M. Boas
Margriet M. Palm
Pieter Koolwijk
Roeland M. H. Merks
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30856-7_8

Neuer Inhalt