Skip to main content
Erschienen in: Computational Mechanics 4/2019

10.08.2018 | Original Paper

Computational modeling of the large deformation and flow of viscoelastic polymers

verfasst von: Tong Shen, Rong Long, Franck Vernerey

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deformation of soft polymeric materials often involves complex nonlinear or transient mechanical behaviors. This is due to the dynamic behaviors of polymer chains at the molecular level within the polymer network. In this paper, we present a computational formulation to describe the transient behavior (e.g., viscoelasticity) of soft polymer networks with dynamic bonds undergoing large to extreme deformation. This formulation is based on an Eulerian description of kinematics and a theoretical framework that directly connects the molecular-level kinetics of dynamic bonds to the macroscopic mechanical behavior of the material. An extended finite element method is used to discretize the field variables and the governing equations in an axisymmetric domain. In addition to validating the framework, this model is used to study how the chain dynamics affect the macroscopic response of material as they undergo a combination of flow and elasticity. The problems of cavitation rheology and polymer indentation under extreme deformation are investigated in this context.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520CrossRef Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520CrossRef
2.
Zurück zum Zitat Asbury JB, Steinel T, Fayer MD (2004) Hydrogen bond networks: structure and evolution after hydrogen bond breaking. J Phys Chem B 108(21):6544–6554CrossRef Asbury JB, Steinel T, Fayer MD (2004) Hydrogen bond networks: structure and evolution after hydrogen bond breaking. J Phys Chem B 108(21):6544–6554CrossRef
3.
Zurück zum Zitat Bathe K-J (2001) The inf–sup condition and its evaluation for mixed finite element methods. Comput Struct 79(2):243–252MathSciNetCrossRef Bathe K-J (2001) The inf–sup condition and its evaluation for mixed finite element methods. Comput Struct 79(2):243–252MathSciNetCrossRef
4.
Zurück zum Zitat Bathe K-J (2006) Finite element procedures. Prentice-Hall, Upper Saddle River Bathe K-J (2006) Finite element procedures. Prentice-Hall, Upper Saddle River
5.
Zurück zum Zitat Bathe K-J, Wilson EL (1976) Numerical methods in finite element analysis, vol 197. Prentice-Hall, Upper Saddle RiverMATH Bathe K-J, Wilson EL (1976) Numerical methods in finite element analysis, vol 197. Prentice-Hall, Upper Saddle RiverMATH
6.
Zurück zum Zitat Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613CrossRef Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613CrossRef
7.
Zurück zum Zitat Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394MathSciNetMATHCrossRef Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394MathSciNetMATHCrossRef
8.
Zurück zum Zitat Bergström JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33(9):523–530CrossRef Bergström JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33(9):523–530CrossRef
10.
Zurück zum Zitat Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4CrossRef Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4CrossRef
11.
Zurück zum Zitat Choi YJ, Hulsen MA (2012) Alignment of particles in a confined shear flow of a viscoelastic fluid. J Non-Newton Fluid Mech 175:89–103CrossRef Choi YJ, Hulsen MA (2012) Alignment of particles in a confined shear flow of a viscoelastic fluid. J Non-Newton Fluid Mech 175:89–103CrossRef
12.
Zurück zum Zitat Choi Y, Hulsen MA, Meijer HEH (2010) An extended finite element method for the simulation of particulate viscoelastic flows. J Non-Newton Fluid Mech 165(11–12):607–624MATHCrossRef Choi Y, Hulsen MA, Meijer HEH (2010) An extended finite element method for the simulation of particulate viscoelastic flows. J Non-Newton Fluid Mech 165(11–12):607–624MATHCrossRef
13.
Zurück zum Zitat Choi YJ, Hulsen MA, Meijer HEH (2012) Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method. Comput Fluids 57:183–194MathSciNetMATHCrossRef Choi YJ, Hulsen MA, Meijer HEH (2012) Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method. Comput Fluids 57:183–194MathSciNetMATHCrossRef
14.
Zurück zum Zitat Christensen RM, Freund LB (1971) Theory of viscoelasticity. J Appl Mech 38:720CrossRef Christensen RM, Freund LB (1971) Theory of viscoelasticity. J Appl Mech 38:720CrossRef
15.
Zurück zum Zitat De Gennes PG, Leger L (1982) Dynamics of entangled polymer chains. Ann Rev Phys Chem 33(1):49–61CrossRef De Gennes PG, Leger L (1982) Dynamics of entangled polymer chains. Ann Rev Phys Chem 33(1):49–61CrossRef
16.
Zurück zum Zitat de Gennes PG (1992) Reptation of a polymer chain in the presence of fixed obstacles. Simple Views Condens Matter 4:148 de Gennes PG (1992) Reptation of a polymer chain in the presence of fixed obstacles. Simple Views Condens Matter 4:148
18.
Zurück zum Zitat Donea J, Giuliani S, Halleux J-P (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723MATHCrossRef Donea J, Giuliani S, Halleux J-P (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723MATHCrossRef
19.
Zurück zum Zitat Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, Pearson Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, Pearson
20.
Zurück zum Zitat Duddu R, Lavier LL, Hughes TJR, Calo VM (2012) A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements. Int J Numer Methods Eng 89(6):762–785MathSciNetMATHCrossRef Duddu R, Lavier LL, Hughes TJR, Calo VM (2012) A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements. Int J Numer Methods Eng 89(6):762–785MathSciNetMATHCrossRef
21.
Zurück zum Zitat Étienne J, Hinch EJ, Li J (2006) A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J Non-Newton Fluid Mech 136(2–3):157–166MATHCrossRef Étienne J, Hinch EJ, Li J (2006) A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J Non-Newton Fluid Mech 136(2–3):157–166MATHCrossRef
22.
Zurück zum Zitat Fakhouri S, Hutchens SB, Crosby AJ (2015) Puncture mechanics of soft solids. Soft Matter 11(23):4723–4730CrossRef Fakhouri S, Hutchens SB, Crosby AJ (2015) Puncture mechanics of soft solids. Soft Matter 11(23):4723–4730CrossRef
23.
Zurück zum Zitat Farsad M, Vernerey FJ (2012) An XFEM-based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267MathSciNetMATHCrossRef Farsad M, Vernerey FJ (2012) An XFEM-based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267MathSciNetMATHCrossRef
24.
Zurück zum Zitat Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489MathSciNetMATHCrossRef Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489MathSciNetMATHCrossRef
25.
Zurück zum Zitat Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302MathSciNetMATHCrossRef Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302MathSciNetMATHCrossRef
26.
Zurück zum Zitat Foucard L, Vernerey FJ, and (2016) A particle-based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng 107(11):923–946MathSciNetMATHCrossRef Foucard L, Vernerey FJ, and (2016) A particle-based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng 107(11):923–946MathSciNetMATHCrossRef
27.
Zurück zum Zitat Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127MathSciNetMATH Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127MathSciNetMATH
28.
Zurück zum Zitat Foucard LC, Vernerey FJ (2015) An X-FEM-based numerical-asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98MathSciNetMATHCrossRef Foucard LC, Vernerey FJ (2015) An X-FEM-based numerical-asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98MathSciNetMATHCrossRef
29.
Zurück zum Zitat Fourche G (1995) An overview of the basic aspects of polymer adhesion. Part i: fundamentals. Polym Eng Sci 35(12):957–967CrossRef Fourche G (1995) An overview of the basic aspects of polymer adhesion. Part i: fundamentals. Polym Eng Sci 35(12):957–967CrossRef
30.
Zurück zum Zitat Gent AN, Lindley PB (1959) Internal rupture of bonded rubber cylinders in tension. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 249. The Royal Society, pp 195–205 Gent AN, Lindley PB (1959) Internal rupture of bonded rubber cylinders in tension. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 249. The Royal Society, pp 195–205
31.
Zurück zum Zitat Grillet AM, Wyatt NB, Gloe LM (2012) Polymer gel rheology and adhesion. In: Rheology. InTech Grillet AM, Wyatt NB, Gloe LM (2012) Polymer gel rheology and adhesion. In: Rheology. InTech
32.
Zurück zum Zitat Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRef Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRef
33.
Zurück zum Zitat Harlen OG, Rallison JM, Szabo P (1995) A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J Non-Newton Fluid Mech 60(1):81–104CrossRef Harlen OG, Rallison JM, Szabo P (1995) A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J Non-Newton Fluid Mech 60(1):81–104CrossRef
34.
Zurück zum Zitat Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRef Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRef
35.
Zurück zum Zitat Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403CrossRef Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403CrossRef
36.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349MathSciNetMATHCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349MathSciNetMATHCrossRef
37.
Zurück zum Zitat Kalcioglu ZI, Mahmoodian R, Hu Y, Suo Z, Van Vliet KJ (2012) From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8(12):3393–3398CrossRef Kalcioglu ZI, Mahmoodian R, Hu Y, Suo Z, Van Vliet KJ (2012) From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8(12):3393–3398CrossRef
38.
Zurück zum Zitat Kloxin CJ, Bowman CN (2013) Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem Soc Rev 42(17):7161–7173CrossRef Kloxin CJ, Bowman CN (2013) Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem Soc Rev 42(17):7161–7173CrossRef
39.
Zurück zum Zitat Le Tallec P, Rahier C, Kaiss A (1993) Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109(3–4):233–258MathSciNetMATHCrossRef Le Tallec P, Rahier C, Kaiss A (1993) Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109(3–4):233–258MathSciNetMATHCrossRef
40.
Zurück zum Zitat Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561MathSciNetMATHCrossRef Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561MathSciNetMATHCrossRef
41.
42.
Zurück zum Zitat Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126(1):104–110CrossRef Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126(1):104–110CrossRef
43.
Zurück zum Zitat Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, Hoboken Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, Hoboken
44.
Zurück zum Zitat Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y (2010) In situ mechanical characterization of mouse oocytes using a cell holding device. Lab Chip 10(16):2154–2161CrossRef Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y (2010) In situ mechanical characterization of mouse oocytes using a cell holding device. Lab Chip 10(16):2154–2161CrossRef
45.
Zurück zum Zitat Liu X, Shi J, Zong Z, Wan K-T, Sun Y (2012) Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann Biomed Eng 40(10):2122–2130CrossRef Liu X, Shi J, Zong Z, Wan K-T, Sun Y (2012) Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann Biomed Eng 40(10):2122–2130CrossRef
46.
Zurück zum Zitat Long R, Hui C-Y (2010) Effects of triaxiality on the growth of crack-like cavities in soft incompressible elastic solids. Soft Matter 6(6):1238–1245CrossRef Long R, Hui C-Y (2010) Effects of triaxiality on the growth of crack-like cavities in soft incompressible elastic solids. Soft Matter 6(6):1238–1245CrossRef
47.
Zurück zum Zitat Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99CrossRef Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99CrossRef
48.
Zurück zum Zitat Maeda T, Otsuka H, Takahara A (2009) Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Polym Sci 34(7):581–604CrossRef Maeda T, Otsuka H, Takahara A (2009) Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Polym Sci 34(7):581–604CrossRef
49.
Zurück zum Zitat Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials. Part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660MathSciNetMATHCrossRef Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials. Part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660MathSciNetMATHCrossRef
50.
Zurück zum Zitat Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10):2231–2258MathSciNetMATHCrossRef Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10):2231–2258MathSciNetMATHCrossRef
51.
Zurück zum Zitat Moës N, Béchet E, Tourbier M (2006) Imposing dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669MathSciNetMATHCrossRef Moës N, Béchet E, Tourbier M (2006) Imposing dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669MathSciNetMATHCrossRef
52.
Zurück zum Zitat Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef
53.
Zurück zum Zitat Nanthakumar SS, Lahmer T, Zhuang X, Park HS, Rabczuk T (2016) Topology optimization of piezoelectric nanostructures. J Mech Phys Solids 94:316–335MathSciNetCrossRef Nanthakumar SS, Lahmer T, Zhuang X, Park HS, Rabczuk T (2016) Topology optimization of piezoelectric nanostructures. J Mech Phys Solids 94:316–335MathSciNetCrossRef
54.
Zurück zum Zitat Plohr BJ, Sharp DH (1988) A conservative Eulerian formulation of the equations for elastic flow. Adv Appl Math 9(4):481–499MathSciNetMATHCrossRef Plohr BJ, Sharp DH (1988) A conservative Eulerian formulation of the equations for elastic flow. Adv Appl Math 9(4):481–499MathSciNetMATHCrossRef
55.
Zurück zum Zitat Quadrini F, Squeo EA, Guglielmotti A (2010) Indentation creep of polymers. i. Experimental. Polym Eng Sci 50(12):2431–2439CrossRef Quadrini F, Squeo EA, Guglielmotti A (2010) Indentation creep of polymers. i. Experimental. Polym Eng Sci 50(12):2431–2439CrossRef
56.
Zurück zum Zitat Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84(2–3):217–232MATHMathSciNetCrossRef Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84(2–3):217–232MATHMathSciNetCrossRef
57.
Zurück zum Zitat Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26–27):3455–3482MATHCrossRef Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26–27):3455–3482MATHCrossRef
58.
Zurück zum Zitat Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, HobokenCrossRef Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, HobokenCrossRef
59.
Zurück zum Zitat Shen T, Vernerey F (2017) Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution. Comput Mech 60(1):143–161MathSciNetMATHCrossRef Shen T, Vernerey F (2017) Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution. Comput Mech 60(1):143–161MathSciNetMATHCrossRef
60.
Zurück zum Zitat Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173MATHCrossRef Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173MATHCrossRef
61.
Zurück zum Zitat Sridhar SL, Schneider MC, Chu S, de Roucy G, Bryant SJ, Vernerey FJ (2017) Heterogeneity is key to hydrogel-based cartilage tissue regeneration. Soft Matter 13(28):4841–4855CrossRef Sridhar SL, Schneider MC, Chu S, de Roucy G, Bryant SJ, Vernerey FJ (2017) Heterogeneity is key to hydrogel-based cartilage tissue regeneration. Soft Matter 13(28):4841–4855CrossRef
62.
Zurück zum Zitat Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960MATHCrossRef Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960MATHCrossRef
63.
Zurück zum Zitat Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP, Wettlaufer JS, Dufresne ER (2014) Stiffening solids with liquid inclusions. arXiv preprint arXiv:1407.6424 Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP, Wettlaufer JS, Dufresne ER (2014) Stiffening solids with liquid inclusions. arXiv preprint arXiv:​1407.​6424
64.
Zurück zum Zitat Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MathSciNetMATHCrossRef Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MathSciNetMATHCrossRef
65.
Zurück zum Zitat Takashi N, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138MATHCrossRef Takashi N, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138MATHCrossRef
66.
Zurück zum Zitat Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 25(5):1516–1523CrossRef Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 25(5):1516–1523CrossRef
67.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces the deforming-spatial-domain/space–time procedure: ii. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetMATHCrossRef Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces the deforming-spatial-domain/space–time procedure: ii. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetMATHCrossRef
68.
Zurück zum Zitat Treloar LRG (1943) The elasticity of a network of long-chain molecules ii. Trans Faraday Soc 39:241–246CrossRef Treloar LRG (1943) The elasticity of a network of long-chain molecules ii. Trans Faraday Soc 39:241–246CrossRef
69.
Zurück zum Zitat Tvergaard V, Needleman A (2011) Polymer indentation: numerical analysis and comparison with a spherical cavity model. J Mech Phys Solids 59(9):1669–1684MATHCrossRef Tvergaard V, Needleman A (2011) Polymer indentation: numerical analysis and comparison with a spherical cavity model. J Mech Phys Solids 59(9):1669–1684MATHCrossRef
70.
Zurück zum Zitat Vernerey FJ (2018) Transient response of nonlinear polymer networks: a kinetic theory. J Mech Phys Solids 115:230–247MathSciNetCrossRef Vernerey FJ (2018) Transient response of nonlinear polymer networks: a kinetic theory. J Mech Phys Solids 115:230–247MathSciNetCrossRef
71.
Zurück zum Zitat Vernerey FJ, Akalp U (2016) Role of catch bonds in actomyosin mechanics and cell mechanosensitivity. Phys Rev E 94(1):012403CrossRef Vernerey FJ, Akalp U (2016) Role of catch bonds in actomyosin mechanics and cell mechanosensitivity. Phys Rev E 94(1):012403CrossRef
72.
Zurück zum Zitat Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699CrossRef Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699CrossRef
73.
Zurück zum Zitat Vernerey FJ, Kabiri M (2012) An adaptive concurrent multiscale method for microstructured elastic solids. Comput Methods Appl Mech Eng 241:52–64MathSciNetMATHCrossRef Vernerey FJ, Kabiri M (2012) An adaptive concurrent multiscale method for microstructured elastic solids. Comput Methods Appl Mech Eng 241:52–64MathSciNetMATHCrossRef
74.
Zurück zum Zitat Vernerey FJ, Long R, Brighenti R (2017) A statistically-based continuum theory for polymers with transient networks. J Mech Phys Solids 107:1–20MathSciNetCrossRef Vernerey FJ, Long R, Brighenti R (2017) A statistically-based continuum theory for polymers with transient networks. J Mech Phys Solids 107:1–20MathSciNetCrossRef
75.
Zurück zum Zitat Vitali E, Benson DJ (2006) An extended finite element formulation for contact in multi-material arbitrary Lagrangian–Eulerian calculations. Int J Numeric Methods Eng 67(10):1420–1444 Vitali E, Benson DJ (2006) An extended finite element formulation for contact in multi-material arbitrary Lagrangian–Eulerian calculations. Int J Numeric Methods Eng 67(10):1420–1444
76.
Zurück zum Zitat Vu-Bac N, Bessa MA, Rabczuk T, Liu WK (2015) A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18):6713–6723CrossRef Vu-Bac N, Bessa MA, Rabczuk T, Liu WK (2015) A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18):6713–6723CrossRef
77.
Zurück zum Zitat Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1):14CrossRef Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1):14CrossRef
78.
Zurück zum Zitat Yamamoto M (1956) The visco-elastic properties of network structure i. General formalism. J Phys Soc Jpn 11(4):413–421MathSciNetCrossRef Yamamoto M (1956) The visco-elastic properties of network structure i. General formalism. J Phys Soc Jpn 11(4):413–421MathSciNetCrossRef
79.
Zurück zum Zitat Zhu J, Li T, Cai S, Suo Z (2011) Snap-through expansion of a gas bubble in an elastomer. J Adhes 87(5):466–481CrossRef Zhu J, Li T, Cai S, Suo Z (2011) Snap-through expansion of a gas bubble in an elastomer. J Adhes 87(5):466–481CrossRef
80.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 3. McGraw-Hill, LondonMATH Zienkiewicz OC, Taylor RL, Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 3. McGraw-Hill, LondonMATH
81.
Zurück zum Zitat Zimberlin JA, McManus JJ, Crosby AJ (2010) Cavitation rheology of the vitreous: mechanical properties of biological tissue. Soft Matter 6(15):3632–3635CrossRef Zimberlin JA, McManus JJ, Crosby AJ (2010) Cavitation rheology of the vitreous: mechanical properties of biological tissue. Soft Matter 6(15):3632–3635CrossRef
82.
Zurück zum Zitat Zimberlin JA, Sanabria-DeLong N, Tew GN, Crosby AJ (2007) Cavitation rheology for soft materials. Soft Matter 3(6):763–767CrossRef Zimberlin JA, Sanabria-DeLong N, Tew GN, Crosby AJ (2007) Cavitation rheology for soft materials. Soft Matter 3(6):763–767CrossRef
Metadaten
Titel
Computational modeling of the large deformation and flow of viscoelastic polymers
verfasst von
Tong Shen
Rong Long
Franck Vernerey
Publikationsdatum
10.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1619-0

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt