Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Computational Modelling of the Vibrational Characteristics of Zero-Dimensional Nanoscopic Structures

verfasst von : Esmaeal Ghavanloo, Hashem Rafii-Tabar, Seyed Ahmad Fazelzadeh

Erschienen in: Computational Continuum Mechanics of Nanoscopic Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Insight into the vibrational characteristics of zero-dimensional nanoscopic structures is of fundamental interest, since it can be used to predict their geometrical and material properties. Zero-dimensional nanoscopic structures are nano-sized particles with all their three dimensions restricted to a few tens of nanometers. Investigation of these nanoscopic structures has prompted a growing research endeavour in diverse fields including nanolubrication, nanomanufacturing, nanocoatings and nanocomposites (Guo, Xie and Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014)). In this chapter, we consider the nonlocal vibration analysis of zero-dimensional nanoscopic structures. An overview of the current literature discussing the vibration characteristics of zero-dimensional nanoscopic structures is presented first. We then discuss the application of the nonlocal models to the investigation of the vibration properties of the spherical fullerene molecules and nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Guo, G. Xie, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47, 013001 (2014)CrossRef D. Guo, G. Xie, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47, 013001 (2014)CrossRef
2.
Zurück zum Zitat S.A. Fazelzadeh, E. Ghavanloo, Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell. Acta Mech. 223, 2011–2020 (2012)MathSciNetCrossRef S.A. Fazelzadeh, E. Ghavanloo, Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell. Acta Mech. 223, 2011–2020 (2012)MathSciNetCrossRef
3.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, Nonlocal elasticity theory for radial vibration of nanoscale spherical shells. Eur. J. Mech. A Solids 41, 37–42 (2013)MathSciNetCrossRef E. Ghavanloo, S.A. Fazelzadeh, Nonlocal elasticity theory for radial vibration of nanoscale spherical shells. Eur. J. Mech. A Solids 41, 37–42 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat R.E. Stanton, M.D. Newton, Normal vibrational modes of Buckminsterfullerene. J. Phys. Chem. 92, 2141–2145 (1988)CrossRef R.E. Stanton, M.D. Newton, Normal vibrational modes of Buckminsterfullerene. J. Phys. Chem. 92, 2141–2145 (1988)CrossRef
5.
Zurück zum Zitat L.T. Chadderton, Axisymmetric vibrational modes of fullerene C\(_{60}\). J. Phys. Chem. Solids 54, 1027–1033 (1993)CrossRef L.T. Chadderton, Axisymmetric vibrational modes of fullerene C\(_{60}\). J. Phys. Chem. Solids 54, 1027–1033 (1993)CrossRef
6.
Zurück zum Zitat S. Adhikari, R. Chowdhury, Vibration spectra of fullerene family. Phys. Lett. A 375, 2166–2170 (2011)CrossRef S. Adhikari, R. Chowdhury, Vibration spectra of fullerene family. Phys. Lett. A 375, 2166–2170 (2011)CrossRef
7.
Zurück zum Zitat J.H. Lee, B.S. Lee, F.T.K. Au, J. Zhang, Y. Zeng, Vibrational and dynamic analysis of C\(_{60}\) and C\(_{30}\) fullerenes using FEM. Comput. Mater. Sci. 56, 131–140 (2012)CrossRef J.H. Lee, B.S. Lee, F.T.K. Au, J. Zhang, Y. Zeng, Vibrational and dynamic analysis of C\(_{60}\) and C\(_{30}\) fullerenes using FEM. Comput. Mater. Sci. 56, 131–140 (2012)CrossRef
8.
Zurück zum Zitat H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational analysis of the fullerene family using Tersoff potential. Curr. Appl. Phys. 17, 72–77 (2017)CrossRef H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational analysis of the fullerene family using Tersoff potential. Curr. Appl. Phys. 17, 72–77 (2017)CrossRef
9.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J. Mol. Model. 23, 48 (2017)CrossRef E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J. Mol. Model. 23, 48 (2017)CrossRef
10.
Zurück zum Zitat R. Zaera, J. Fernández-Sáez, J.A. Loya, Axisymmetric free vibration of closed thin spherical nano-shell. Compos. Struct. 104, 154–161 (2013)CrossRef R. Zaera, J. Fernández-Sáez, J.A. Loya, Axisymmetric free vibration of closed thin spherical nano-shell. Compos. Struct. 104, 154–161 (2013)CrossRef
11.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech. Adv. Mater. Struct. 22, 597–603 (2015)CrossRef E. Ghavanloo, S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech. Adv. Mater. Struct. 22, 597–603 (2015)CrossRef
12.
Zurück zum Zitat J. Vila, R. Zaera, J. Fernández-Sáez, Axisymmetric free vibration of closed thin spherical nanoshells with bending effects. J. Vib. Control 22, 3789–3806 (2016)MathSciNetCrossRef J. Vila, R. Zaera, J. Fernández-Sáez, Axisymmetric free vibration of closed thin spherical nanoshells with bending effects. J. Vib. Control 22, 3789–3806 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat H. Guo, L. He, B. Xing, Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ. Sci. Nano 4, 2093–2107 (2017)CrossRef H. Guo, L. He, B. Xing, Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ. Sci. Nano 4, 2093–2107 (2017)CrossRef
14.
Zurück zum Zitat A. Crut, P. Maioli, N. Del Fatti, F. Vallee, Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. Ultrasonics 56, 98–108 (2015)CrossRef A. Crut, P. Maioli, N. Del Fatti, F. Vallee, Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. Ultrasonics 56, 98–108 (2015)CrossRef
15.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int. Mater. Rev. 60, 312–329 (2015)CrossRef E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int. Mater. Rev. 60, 312–329 (2015)CrossRef
17.
Zurück zum Zitat D.B. Murray, L. Saviot, Acoustic vibrations of embedded spherical nanoparticles. Phys. E 26, 417–421 (2005)CrossRef D.B. Murray, L. Saviot, Acoustic vibrations of embedded spherical nanoparticles. Phys. E 26, 417–421 (2005)CrossRef
18.
Zurück zum Zitat V. Mankad, S.K. Gupta, P.K. Jha, N.N. Ovsyuk, G.A. Kachurin, Low-frequency Raman scattering from Si/Ge nanocrystals in different matrixes caused by acoustic phonon quantization. J. Appl. Phys. 112, 054318 (2012)CrossRef V. Mankad, S.K. Gupta, P.K. Jha, N.N. Ovsyuk, G.A. Kachurin, Low-frequency Raman scattering from Si/Ge nanocrystals in different matrixes caused by acoustic phonon quantization. J. Appl. Phys. 112, 054318 (2012)CrossRef
19.
Zurück zum Zitat J. Wang, Y. Gao, M.Y. Ng, Y.C. Chang, Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids 85, 287–292 (2015)CrossRef J. Wang, Y. Gao, M.Y. Ng, Y.C. Chang, Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids 85, 287–292 (2015)CrossRef
20.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 24, 075702 (2013)CrossRef E. Ghavanloo, S.A. Fazelzadeh, Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 24, 075702 (2013)CrossRef
21.
Zurück zum Zitat S.A. Fazelzadeh, E. Ghavanloo, Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Modern Phys. Lett. B 27, 1350186 (2013)CrossRef S.A. Fazelzadeh, E. Ghavanloo, Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Modern Phys. Lett. B 27, 1350186 (2013)CrossRef
22.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, T. Murmu, S. Adhikari, Radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to circumferential magnetic field. Phys. E 66, 228–233 (2015)CrossRef E. Ghavanloo, S.A. Fazelzadeh, T. Murmu, S. Adhikari, Radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to circumferential magnetic field. Phys. E 66, 228–233 (2015)CrossRef
24.
Zurück zum Zitat H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)MathSciNetCrossRef H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)MathSciNetCrossRef
25.
Zurück zum Zitat M. Todt, F.G. Rammerstorfer, F.D. Fischer, P.H. Mayrhofer, D. Holec, M.A. Hartmann, Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49, 1620–1627 (2011)CrossRef M. Todt, F.G. Rammerstorfer, F.D. Fischer, P.H. Mayrhofer, D. Holec, M.A. Hartmann, Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49, 1620–1627 (2011)CrossRef
26.
Zurück zum Zitat D. Kahn, K.W. Kim, M.A. Stroscio, Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. 89, 5107–5111 (2001)CrossRef D. Kahn, K.W. Kim, M.A. Stroscio, Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. 89, 5107–5111 (2001)CrossRef
27.
Zurück zum Zitat E. Ghavanloo, S.A. Fazelzadeh, Oscillations of spherical fullerenes interacting with graphene sheet. Phys. B 504, 47–51 (2017)CrossRef E. Ghavanloo, S.A. Fazelzadeh, Oscillations of spherical fullerenes interacting with graphene sheet. Phys. B 504, 47–51 (2017)CrossRef
28.
Zurück zum Zitat A. Vassallo, L. Pang, P. Coleclarke, M. Wilson, Emission FTIR study of C\(_{60}\) thermal stability and oxidation. J. Am. Chem. Soc. 113, 7820–7821 (1991)CrossRef A. Vassallo, L. Pang, P. Coleclarke, M. Wilson, Emission FTIR study of C\(_{60}\) thermal stability and oxidation. J. Am. Chem. Soc. 113, 7820–7821 (1991)CrossRef
29.
Zurück zum Zitat R.A. Jishi, R.M. Mirie, M.S. Dresselhaus, Force-constant model for the vibrational modes in C\(_{60}\). Phys. Rev. B 45, 13685–13689 (1992)CrossRef R.A. Jishi, R.M. Mirie, M.S. Dresselhaus, Force-constant model for the vibrational modes in C\(_{60}\). Phys. Rev. B 45, 13685–13689 (1992)CrossRef
30.
Zurück zum Zitat H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational properties of C\(_{60}\): a comparison among different inter-atomic potentials, Comput. Mater. Sci. 122, 38–45 (2016) H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational properties of C\(_{60}\): a comparison among different inter-atomic potentials, Comput. Mater. Sci. 122, 38–45 (2016)
31.
Zurück zum Zitat C.R. Wylie, L.C. Barrett, Advanced Engineering Mathematics (McGraw-Hill, New York, 1995) C.R. Wylie, L.C. Barrett, Advanced Engineering Mathematics (McGraw-Hill, New York, 1995)
32.
Zurück zum Zitat J.R. Neighbovrs, G.A. Alers, Elastic constants of silver and gold. Phys. Rev. 111, 707–712 (1958)CrossRef J.R. Neighbovrs, G.A. Alers, Elastic constants of silver and gold. Phys. Rev. 111, 707–712 (1958)CrossRef
33.
Zurück zum Zitat V. Mankad, K.K. Mishra, S.K. Gupta, T.R. Ravindran, P.K. Jha, Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles. Vib. Spectrosc. 61, 183–187 (2012)CrossRef V. Mankad, K.K. Mishra, S.K. Gupta, T.R. Ravindran, P.K. Jha, Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles. Vib. Spectrosc. 61, 183–187 (2012)CrossRef
34.
Zurück zum Zitat V. Mankad, P.K. Jha, T.R. Ravindran, Probing confined acoustic phonons in free standing small gold nanoparticles. J. Appl. Phys. 113, 074303 (2013)CrossRef V. Mankad, P.K. Jha, T.R. Ravindran, Probing confined acoustic phonons in free standing small gold nanoparticles. J. Appl. Phys. 113, 074303 (2013)CrossRef
35.
Zurück zum Zitat A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef
36.
Zurück zum Zitat K.S. Al-Basyouni, S.R. Mahmoud, E.O. Alzahrani, Effect of rotation, magnetic field and aperiodic loading on radial vibrations thermo-viscoelastic non-homogeneous media. Bound. Value Probl. 2014, 166 (2014)CrossRef K.S. Al-Basyouni, S.R. Mahmoud, E.O. Alzahrani, Effect of rotation, magnetic field and aperiodic loading on radial vibrations thermo-viscoelastic non-homogeneous media. Bound. Value Probl. 2014, 166 (2014)CrossRef
Metadaten
Titel
Computational Modelling of the Vibrational Characteristics of Zero-Dimensional Nanoscopic Structures
verfasst von
Esmaeal Ghavanloo
Hashem Rafii-Tabar
Seyed Ahmad Fazelzadeh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11650-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.