Skip to main content

2017 | OriginalPaper | Buchkapitel

Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits

verfasst von : Shyam Diwakar, Chaitanya Medini, Manjusha Nair, Harilal Parasuram, Asha Vijayan, Bipin Nair

Erschienen in: Computational Neurology and Psychiatry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cerebellum has been known to show homogeneity in circuit organization and hence the “modules” or various circuits in the cerebellum are attributed to the diversity of functions such as timing, pattern recognition, movement planning and dysfunctions such as ataxia related to the cerebellum. Ataxia-like conditions, induced by intrinsic excitability changes, disable spiking or bursts and thereby limit the quanta of downstream information. Understanding timing, plasticity and functional roles of cerebellum involve large-scale and microcircuit reconstructions validating molecular mechanisms in population activity. Using mathematical modelling, we attempted to reconstruct information transmission at the granular layer of the cerebellum, a circuit whose role in dysfunctions remain yet to be fully explored. We have employed spiking models to reconstruct timing roles and detailed biophysical models for extracellular activity and local field population response. The roles of inhibition, induced plasticity and their implications in information transmission were evaluated. Modulatory roles of Golgi inhibition and pattern abstraction via optimal storage were estimated. An abstraction of the granular and Purkinje layer circuit for neurorobotic roles such as pattern recognition and spike encoding via two new methods was developed. Simulations suggest plasticity at cerebellar relays may be an important element of tremendous storage capacity reliable in the learning of coordination of actions, sensorimotor or cognitive, in which the cerebellum participates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–24 Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–24
2.
Zurück zum Zitat Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31 Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31
3.
Zurück zum Zitat Luciani L (1891) Il Cervelletto, nuovi studi di fisiologia normale e patologica. coi tipi dei successori Le Monnier, Firenze Luciani L (1891) Il Cervelletto, nuovi studi di fisiologia normale e patologica. coi tipi dei successori Le Monnier, Firenze
4.
Zurück zum Zitat Manni E, Petrosini L (1997) Luciani’s work on the cerebellum a century later. Trends Neurosci 20:112–116 Manni E, Petrosini L (1997) Luciani’s work on the cerebellum a century later. Trends Neurosci 20:112–116
5.
Zurück zum Zitat Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535 Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535
6.
Zurück zum Zitat Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–96 Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–96
7.
Zurück zum Zitat Ivry RB, Baldo J V (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212–6 Ivry RB, Baldo J V (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212–6
8.
Zurück zum Zitat Boyd CAR (2010) Cerebellar agenesis revisited. Brain 133:941–4 Boyd CAR (2010) Cerebellar agenesis revisited. Brain 133:941–4
9.
Zurück zum Zitat Yu F, Jiang Q, Sun X, Zhang R (2015) A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain 138:e353 Yu F, Jiang Q, Sun X, Zhang R (2015) A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain 138:e353
10.
Zurück zum Zitat Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525 Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525
11.
Zurück zum Zitat Vos BP, Volny-Luraghi A, Schutter E De (1999) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621–2634 Vos BP, Volny-Luraghi A, Schutter E De (1999) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621–2634
12.
Zurück zum Zitat Albus JS (1975) A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller(CMAC). J. Dyn. Syst. Meas. Control Albus JS (1975) A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller(CMAC). J. Dyn. Syst. Meas. Control
13.
Zurück zum Zitat Tyrrell T, Willshaw D (1992) Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philos Trans R Soc Lond B Biol Sci 336:239–57 Tyrrell T, Willshaw D (1992) Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philos Trans R Soc Lond B Biol Sci 336:239–57
14.
Zurück zum Zitat Eccles JC (1981) Physiology of motor control in man. Appl Neurophysiol 44:5–15 Eccles JC (1981) Physiology of motor control in man. Appl Neurophysiol 44:5–15
15.
Zurück zum Zitat Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245 Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245
16.
Zurück zum Zitat Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61 Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61
17.
Zurück zum Zitat Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470 Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470
18.
Zurück zum Zitat Mazzarello P, Haines D, Manto M-U (2012) Camillo Golgi on Cerebellar Granule Cells. Cerebellum 11:5–24–7 Mazzarello P, Haines D, Manto M-U (2012) Camillo Golgi on Cerebellar Granule Cells. Cerebellum 11:5–24–7
19.
Zurück zum Zitat Eccles JC, Llinás R, Sasaki K (1965) Inhibitory systems in the cerebellar cortex. Proc Aust Assoc Neurol 3:7–14 Eccles JC, Llinás R, Sasaki K (1965) Inhibitory systems in the cerebellar cortex. Proc Aust Assoc Neurol 3:7–14
20.
Zurück zum Zitat Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell. Neuron 43:745–757 Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell. Neuron 43:745–757
21.
Zurück zum Zitat D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, Cesana E, Gandolfi D, Congi L (2011) The cerebellar network: from structure to function and dynamics. Brain Res Rev 66:5–15 D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, Cesana E, Gandolfi D, Congi L (2011) The cerebellar network: from structure to function and dynamics. Brain Res Rev 66:5–15
22.
Zurück zum Zitat D’Angelo E, De Zeeuw CI (2009) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40 D’Angelo E, De Zeeuw CI (2009) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40
23.
Zurück zum Zitat D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805–15 D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805–15
24.
Zurück zum Zitat Eccles JC (1982) The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr 231:423–441 Eccles JC (1982) The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr 231:423–441
25.
Zurück zum Zitat Horne MK, Butler EG (1995) The role of the cerebello-thalamo-cortical pathway in skilled movement. Prog Neurobiol 46:199–213 Horne MK, Butler EG (1995) The role of the cerebello-thalamo-cortical pathway in skilled movement. Prog Neurobiol 46:199–213
26.
Zurück zum Zitat Prestori F, Rossi P, Bearzatto B, Lainé J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D’Angelo E (2008) Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci. doi:10.1523/JNEUROSCI.0409-08.2008 Prestori F, Rossi P, Bearzatto B, Lainé J, Necchi D, Diwakar S, Schiffmann SN, Axelrad H, D’Angelo E (2008) Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J Neurosci. doi:10.​1523/​JNEUROSCI.​0409-08.​2008
27.
Zurück zum Zitat Goldfarb M, Schoorlemmer J, Williams A, et al (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55:449–463 Goldfarb M, Schoorlemmer J, Williams A, et al (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55:449–463
28.
Zurück zum Zitat Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–66 Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–66
29.
Zurück zum Zitat Maex R, Vos B, Ã EDES, Volny-Luraghi a, Vosdagger B, De Schutter E (2002) Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience 113:363–73 Maex R, Vos B, Ã EDES, Volny-Luraghi a, Vosdagger B, De Schutter E (2002) Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience 113:363–73
30.
Zurück zum Zitat Carrillo RR, Ros E, Boucheny C, Coenen OJ-MD (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18–27 Carrillo RR, Ros E, Boucheny C, Coenen OJ-MD (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18–27
31.
Zurück zum Zitat Memmesheimer RM, Rubin R, Ölveczky B, Sompolinsky H (2014) Learning Precisely Timed Spikes. Neuron 82:925–938 Memmesheimer RM, Rubin R, Ölveczky B, Sompolinsky H (2014) Learning Precisely Timed Spikes. Neuron 82:925–938
32.
Zurück zum Zitat Carrillo RR, Ros E, Tolu S, Nieus T, D’Angelo E (2008) Event-driven simulation of cerebellar granule cells. Biosystems 94:10–17 Carrillo RR, Ros E, Tolu S, Nieus T, D’Angelo E (2008) Event-driven simulation of cerebellar granule cells. Biosystems 94:10–17
33.
Zurück zum Zitat Gamez D, Fidjeland AK, Lazdins E (2012) iSpike: a spiking neural interface for the iCub robot. Bioinspir Biomim 7:25008 Gamez D, Fidjeland AK, Lazdins E (2012) iSpike: a spiking neural interface for the iCub robot. Bioinspir Biomim 7:25008
34.
Zurück zum Zitat Medini C, Vijayan A, Zacharia RM, Rajagopal LP, Nair B, Diwakar S (2015) Spike Encoding for Pattern Recognition: Comparing Cerebellum Granular Layer Encoding and BSA algorithms. In: Adv. Comput. Commun. Informatics (ICACCI), 2015 Int. Conf. IEEE, Kochi, pp 1619–1625 Medini C, Vijayan A, Zacharia RM, Rajagopal LP, Nair B, Diwakar S (2015) Spike Encoding for Pattern Recognition: Comparing Cerebellum Granular Layer Encoding and BSA algorithms. In: Adv. Comput. Commun. Informatics (ICACCI), 2015 Int. Conf. IEEE, Kochi, pp 1619–1625
35.
Zurück zum Zitat Vijayan A, Medini C, Palolithazhe A, et al (2015) Modeling Pattern Abstraction in Cerebellum and Estimation of Optimal Storage Capacity. In: Fourth Int. Conf. Adv. Comput. Commun. Informatics. IEEE, Kochi, New York, USA, pp 335–347 Vijayan A, Medini C, Palolithazhe A, et al (2015) Modeling Pattern Abstraction in Cerebellum and Estimation of Optimal Storage Capacity. In: Fourth Int. Conf. Adv. Comput. Commun. Informatics. IEEE, Kochi, New York, USA, pp 335–347
36.
Zurück zum Zitat Burke RE (2007) Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130:887–94 Burke RE (2007) Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130:887–94
37.
Zurück zum Zitat Ghez C, Hening W, Gordon J (1991) Organization of voluntary movement. Curr Opin Neurobiol 1:664–671 Ghez C, Hening W, Gordon J (1991) Organization of voluntary movement. Curr Opin Neurobiol 1:664–671
38.
Zurück zum Zitat Mehring C, Rickert J, Vaadia E, Cardosa de Oliveira S, Aertsen A, Rotter S (2003) Inference of hand movements from local field potentials in monkey motor cortex. Nat Neurosci 6:1253–4 Mehring C, Rickert J, Vaadia E, Cardosa de Oliveira S, Aertsen A, Rotter S (2003) Inference of hand movements from local field potentials in monkey motor cortex. Nat Neurosci 6:1253–4
39.
Zurück zum Zitat Schaal S (2002) Arm and Hand Movement Control. 110–113 Schaal S (2002) Arm and Hand Movement Control. 110–113
40.
Zurück zum Zitat Hemminger S (2010) Linking Error, Passage of Time, the Cerebellum and the Primary Motor Cortex to the Multiple Timescales of Motor Memory By. Hemminger S (2010) Linking Error, Passage of Time, the Cerebellum and the Primary Motor Cortex to the Multiple Timescales of Motor Memory By.
41.
Zurück zum Zitat Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727 Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727
42.
Zurück zum Zitat Gomi H, Kawato M (1996) Equilibrium-Point Control Hypothesis Examined by Measured Arm Stiffness During Multijoint Movement. Science (80-) 272:117–120 Gomi H, Kawato M (1996) Equilibrium-Point Control Hypothesis Examined by Measured Arm Stiffness During Multijoint Movement. Science (80-) 272:117–120
43.
Zurück zum Zitat Snider RS, Stowell A (1944) Receiving Areas of the Tactile, Auditory, and Visual Systems in the Cerebellum. J Neurophysiol 7:331–357 Snider RS, Stowell A (1944) Receiving Areas of the Tactile, Auditory, and Visual Systems in the Cerebellum. J Neurophysiol 7:331–357
44.
Zurück zum Zitat Azizi SA, Woodward DJ (1990) Interactions of visual and auditory mossy fiber inputs in the paraflocculus of the rat: a gating action of multimodal inputs. Brain Res 533:255–62 Azizi SA, Woodward DJ (1990) Interactions of visual and auditory mossy fiber inputs in the paraflocculus of the rat: a gating action of multimodal inputs. Brain Res 533:255–62
45.
Zurück zum Zitat Gao J-H, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science (80-) 272:545–547 Gao J-H, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science (80-) 272:545–547
47.
Zurück zum Zitat Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp brain Res 109:240–250 Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp brain Res 109:240–250
48.
Zurück zum Zitat Mapelli J, D’Angelo E (2007) The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci 27:1285–96 Mapelli J, D’Angelo E (2007) The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci 27:1285–96
49.
Zurück zum Zitat Roggeri L, Rivieccio B, Rossi P, D’Angelo E (2008) Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci 28:6354–9 Roggeri L, Rivieccio B, Rossi P, D’Angelo E (2008) Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci 28:6354–9
50.
Zurück zum Zitat Diwakar S, Lombardo P, Solinas S, Naldi G, D’Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6:e21928 Diwakar S, Lombardo P, Solinas S, Naldi G, D’Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6:e21928
51.
Zurück zum Zitat Parasuram H, Nair B, Naldi G, D’Angelo E, Diwakar S (2015) Exploiting point source approximation on detailed neuronal models to reconstruct single neuron electric field and population LFP. In: 2015 Int. Jt. Conf. Neural Networks. IEEE, pp 1–7 Parasuram H, Nair B, Naldi G, D’Angelo E, Diwakar S (2015) Exploiting point source approximation on detailed neuronal models to reconstruct single neuron electric field and population LFP. In: 2015 Int. Jt. Conf. Neural Networks. IEEE, pp 1–7
52.
Zurück zum Zitat Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–90 Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–90
53.
Zurück zum Zitat Diwakar S, Lombardo P, Solinas S, Naldi G, D’Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6:e21928 Diwakar S, Lombardo P, Solinas S, Naldi G, D’Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6:e21928
54.
Zurück zum Zitat Courtemanche R, Robinson JC, Aponte DI (2013) Linking oscillations in cerebellar circuits. Front Neural Circuits 7:125 Courtemanche R, Robinson JC, Aponte DI (2013) Linking oscillations in cerebellar circuits. Front Neural Circuits 7:125
55.
Zurück zum Zitat Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–85 Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–85
56.
Zurück zum Zitat Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12
57.
Zurück zum Zitat Medini C, Nair B, D’Angelo E, Naldi G, Diwakar S (2012) Modeling spike-train processing in the cerebellum granular layer and changes in plasticity reveal single neuron effects in neural ensembles. Comput Intell Neurosci 2012:359529 Medini C, Nair B, D’Angelo E, Naldi G, Diwakar S (2012) Modeling spike-train processing in the cerebellum granular layer and changes in plasticity reveal single neuron effects in neural ensembles. Comput Intell Neurosci 2012:359529
58.
Zurück zum Zitat Courtemanche R, Chabaud P, Lamarre Y (2009) Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci 3:6 Courtemanche R, Chabaud P, Lamarre Y (2009) Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci 3:6
59.
Zurück zum Zitat Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–766 Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–766
60.
Zurück zum Zitat Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100 Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100
61.
Zurück zum Zitat Parasuram H, Nair B, D’Angelo E, Hines M, Naldi G, Diwakar S (2016) Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Front Comput Neurosci 10:65 Parasuram H, Nair B, D’Angelo E, Hines M, Naldi G, Diwakar S (2016) Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Front Comput Neurosci 10:65
62.
Zurück zum Zitat Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A 105:3593–3598 Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A 105:3593–3598
63.
Zurück zum Zitat La Camera G, Rauch A, Lüscher H-R, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 16:2101–2124 La Camera G, Rauch A, Lüscher H-R, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 16:2101–2124
64.
Zurück zum Zitat Yoosef A, Rajendran AG, Nair B, Diwakar S (2014) Parallelization of Cerebellar Granular Layer Circuitry Model for Physiological Predictions. Proc. Int. Symp. Transl. Neurosci. {&} XXXII Annu. Conf. Indian Acad. Neurosci. Yoosef A, Rajendran AG, Nair B, Diwakar S (2014) Parallelization of Cerebellar Granular Layer Circuitry Model for Physiological Predictions. Proc. Int. Symp. Transl. Neurosci. {&} XXXII Annu. Conf. Indian Acad. Neurosci.
65.
Zurück zum Zitat Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642 Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642
66.
Zurück zum Zitat Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572 Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572
67.
Zurück zum Zitat Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99:335–347 Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99:335–347
68.
Zurück zum Zitat Medini C, Vijayan A, D’Angelo E, Nair B, Diwakar S (2014) Computationally Efficient Biorealistic Reconstructions of Cerebellar Neuron Spiking Patterns. Int Conf Interdiscip Adv Appl Comput - ICONIAAC ’14 1–6 Medini C, Vijayan A, D’Angelo E, Nair B, Diwakar S (2014) Computationally Efficient Biorealistic Reconstructions of Cerebellar Neuron Spiking Patterns. Int Conf Interdiscip Adv Appl Comput - ICONIAAC ’14 1–6
69.
Zurück zum Zitat Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R (2011) Fitting neuron models to spike trains. Front Neurosci 5:9 Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R (2011) Fitting neuron models to spike trains. Front Neurosci 5:9
70.
Zurück zum Zitat D’Angelo E, Nieus T, Maffei a, Armano S, Rossi P, Taglietti V, Fontana a, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k + -dependent mechanism. J Neurosci 21:759–70 D’Angelo E, Nieus T, Maffei a, Armano S, Rossi P, Taglietti V, Fontana a, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k + -dependent mechanism. J Neurosci 21:759–70
71.
Zurück zum Zitat Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450:1245–8 Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450:1245–8
72.
Zurück zum Zitat Maex R, Schutter E De (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537 Maex R, Schutter E De (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537
73.
Zurück zum Zitat Vos BP, Maex R, Volny-Luraghi A, Schutter E De (1999) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6 Vos BP, Maex R, Volny-Luraghi A, Schutter E De (1999) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6
74.
Zurück zum Zitat Prestori F, Person AL, D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L (2013) The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circuits 7:93 Prestori F, Person AL, D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L (2013) The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circuits 7:93
75.
Zurück zum Zitat Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E (2009) Axonal Na + channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol 101:519–532 Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E (2009) Axonal Na + channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol 101:519–532
76.
Zurück zum Zitat Solinas S, Forti L, Cesana E, Mapelli J, Schutter E De, Angelo ED (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. doi:10.3389/neuro.03/002.2007 Solinas S, Forti L, Cesana E, Mapelli J, Schutter E De, Angelo ED (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. doi:10.​3389/​neuro.​03/​002.​2007
77.
Zurück zum Zitat Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12
78.
Zurück zum Zitat Parasuram H, Nair B, Naldi G, Angelo ED, Diwakar S, D’Angelo E (2011) A modeling based study on the origin and nature of evoked post-synaptic local field potentials in granular layer. J Physiol Paris 105:71–82 Parasuram H, Nair B, Naldi G, Angelo ED, Diwakar S, D’Angelo E (2011) A modeling based study on the origin and nature of evoked post-synaptic local field potentials in granular layer. J Physiol Paris 105:71–82
79.
Zurück zum Zitat Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7–11 Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7–11
80.
Zurück zum Zitat Shannon C (1948) A Mathematical Theory of Communication. Bell Syst Tech J 27:379–423 Shannon C (1948) A Mathematical Theory of Communication. Bell Syst Tech J 27:379–423
81.
Zurück zum Zitat Brasselet R, Johansson RS, Arleo A (2011) Quantifying neurotransmission reliability through metrics-based information analysis. Neural Comput 23:852–81 Brasselet R, Johansson RS, Arleo A (2011) Quantifying neurotransmission reliability through metrics-based information analysis. Neural Comput 23:852–81
82.
Zurück zum Zitat Arleo A, Nieus T, Bezzi M, D’Errico A (2010) How synaptic release probability shapes neuronal transmission: Information-theoretic analysis in a cerebellar granule cell. Neural … Arleo A, Nieus T, Bezzi M, D’Errico A (2010) How synaptic release probability shapes neuronal transmission: Information-theoretic analysis in a cerebellar granule cell. Neural …
83.
Zurück zum Zitat Nicholson C, Llinas R (1971) Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol 34:509–531 Nicholson C, Llinas R (1971) Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol 34:509–531
84.
Zurück zum Zitat D’Angelo E (2011) Neural circuits of the cerebellum: hypothesis for function. J Integr Neurosci 10:317–52 D’Angelo E (2011) Neural circuits of the cerebellum: hypothesis for function. J Integr Neurosci 10:317–52
85.
Zurück zum Zitat Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–60 Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–60
86.
Zurück zum Zitat Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J Neurosci 20:5392–5400 Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J Neurosci 20:5392–5400
87.
Zurück zum Zitat Rieke F, Warland D, De Ruyter Van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press 20:xvi, 395 Rieke F, Warland D, De Ruyter Van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press 20:xvi, 395
88.
Zurück zum Zitat Ghosh-Dastidar S, Adeli H (2007) Improved Spiking Neural Networks for EEG Classification and Epilepsy and Seizure Detection. Integr Comput Aided Eng 14:187–212 Ghosh-Dastidar S, Adeli H (2007) Improved Spiking Neural Networks for EEG Classification and Epilepsy and Seizure Detection. Integr Comput Aided Eng 14:187–212
89.
Zurück zum Zitat McKennoch S, Liu DLD, Bushnell LG (2006) Fast Modifications of the SpikeProp Algorithm. 2006 IEEE Int Jt Conf Neural Netw Proc 3970–3977 McKennoch S, Liu DLD, Bushnell LG (2006) Fast Modifications of the SpikeProp Algorithm. 2006 IEEE Int Jt Conf Neural Netw Proc 3970–3977
90.
Zurück zum Zitat Rosenblatt F (1962) Principles of Neurodynamics. Rosenblatt F (1962) Principles of Neurodynamics.
91.
Zurück zum Zitat Vijayan A, Nutakki C, Medini C, Singanamala H, Nair B (2013) Classifying Movement Articulation for Robotic Arms via Machine Learning. J Intell Comput 4:123–134 Vijayan A, Nutakki C, Medini C, Singanamala H, Nair B (2013) Classifying Movement Articulation for Robotic Arms via Machine Learning. J Intell Comput 4:123–134
92.
Zurück zum Zitat Hansel C, Linden DJ (2000) Long-Term Depression of the Cerebellar Climbing Fiber–Purkinje Neuron Synapse. Neuron 26:473–482 Hansel C, Linden DJ (2000) Long-Term Depression of the Cerebellar Climbing Fiber–Purkinje Neuron Synapse. Neuron 26:473–482
93.
Zurück zum Zitat Clopath C, Nadal JP, Brunel N (2012) Storage of correlated patterns in standard and bistable Purkinje cell models. PLoS Comput Biol 8:1–10 Clopath C, Nadal JP, Brunel N (2012) Storage of correlated patterns in standard and bistable Purkinje cell models. PLoS Comput Biol 8:1–10
94.
Zurück zum Zitat Rubin R, Monasson R, Sompolinsky H (2010) Theory of spike timing based neural classifiers. 4 Rubin R, Monasson R, Sompolinsky H (2010) Theory of spike timing based neural classifiers. 4
95.
Zurück zum Zitat Mapelli J, Gandolfi D, D’Angelo E (2010) Combinatorial responses controlled by synaptic inhibition in cerebellum granular layer. J Neurophysiol 103:250–261 Mapelli J, Gandolfi D, D’Angelo E (2010) Combinatorial responses controlled by synaptic inhibition in cerebellum granular layer. J Neurophysiol 103:250–261
Metadaten
Titel
Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits
verfasst von
Shyam Diwakar
Chaitanya Medini
Manjusha Nair
Harilal Parasuram
Asha Vijayan
Bipin Nair
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49959-8_12