Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2012

01.01.2012 | Research Paper

Computational strategies for reliability-based structural optimization of aeroelastic limit cycle oscillations

verfasst von: Bret Stanford, Philip Beran

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gradient-based optimization, via the adjoint method, is needed to realistically enable the reliability-based design of a nonlinear unsteady aeroelastic system with many random and/or deterministic design variables. The adjoint derivatives of a time-marched system entail a cumbersome reverse-time integration, and so a time-periodic spectral element scheme is used here to efficiently capture the gradients of the limit cycle oscillations. Further reductions in the computational cost of the monolithic-time adjoint vector are obtained with proper orthogonal decomposition, which projects the large system onto a reduced basis. Design reliability is computed with the first order reliability method, which provides an estimate of the failure probability without resorting to sampling-based approaches (infeasible for large systems). Analytical gradients are needed to obtain the most probable point (in the random variable space), as well as the reliability design derivatives. These computational strategies are utilized to locate the optimal thickness distribution of a cantilevered wing operating beyond its flutter point in supersonic flow (via piston theory). Specifically, the wing mass is minimized under both deterministic and non-deterministic limit cycle oscillation amplitude constraints, with both structural and flow uncertainties considered in the latter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen M, Maute K (2004) Reliability-based design optimization of aeroelastic structures. Struct Multidiscipl Optim 27(4):228–242CrossRef Allen M, Maute K (2004) Reliability-based design optimization of aeroelastic structures. Struct Multidiscipl Optim 27(4):228–242CrossRef
Zurück zum Zitat Allen M, Maute K (2005) Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena. Comput Methods Appl Mech Eng 194(30):3472–3495CrossRefMATH Allen M, Maute K (2005) Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena. Comput Methods Appl Mech Eng 194(30):3472–3495CrossRefMATH
Zurück zum Zitat Ashley H, Zartarian G (1956) Piston theory—a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23(12):1109–1118MathSciNet Ashley H, Zartarian G (1956) Piston theory—a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23(12):1109–1118MathSciNet
Zurück zum Zitat Attar P, Dowell E (2006) Stochastic analysis of a nonlinear aeroelastic model using the response surface method. J Aircr 43(4):1044–1052CrossRef Attar P, Dowell E (2006) Stochastic analysis of a nonlinear aeroelastic model using the response surface method. J Aircr 43(4):1044–1052CrossRef
Zurück zum Zitat Barboni R, Mannini A, Gaudenzi P (1999) On the use of the P-TFE mthod for panel flutter optimization. Comput Struct 70(1):109–117CrossRefMATH Barboni R, Mannini A, Gaudenzi P (1999) On the use of the P-TFE mthod for panel flutter optimization. Comput Struct 70(1):109–117CrossRefMATH
Zurück zum Zitat Beran P, Lucia D (2005) A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn 39(1):143–158CrossRefMATH Beran P, Lucia D (2005) A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn 39(1):143–158CrossRefMATH
Zurück zum Zitat Beran P, Pettit C, Millman D (2006) Uncertainty quantification of limit cycle oscillations. J Comput Phys 217(1):217–247CrossRefMATH Beran P, Pettit C, Millman D (2006) Uncertainty quantification of limit cycle oscillations. J Comput Phys 217(1):217–247CrossRefMATH
Zurück zum Zitat Beran P, Stanford B, Kurdi M (2010) Sensitivity analysis for optimization of dynamic systems with reduced order modeling. In: AIAA aerospace sciences meeting and exhibit, Orlando, FL, 4–7 January Beran P, Stanford B, Kurdi M (2010) Sensitivity analysis for optimization of dynamic systems with reduced order modeling. In: AIAA aerospace sciences meeting and exhibit, Orlando, FL, 4–7 January
Zurück zum Zitat Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Addison-Wesley, CambridgeMATH Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Addison-Wesley, CambridgeMATH
Zurück zum Zitat Butler R (1998) The optimisation of wing structures—theory or practice? Aircr Eng Aerosp Technol 70(4):4–8CrossRef Butler R (1998) The optimisation of wing structures—theory or practice? Aircr Eng Aerosp Technol 70(4):4–8CrossRef
Zurück zum Zitat Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375CrossRefMATHMathSciNet Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375CrossRefMATHMathSciNet
Zurück zum Zitat Cook R, Malkus D, Plesha M, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York Cook R, Malkus D, Plesha M, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York
Zurück zum Zitat Dowell E (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275CrossRef Dowell E (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275CrossRef
Zurück zum Zitat Dowell E, Edwards J, Strganac T (2003) Nonlinear aeroelasticity. J Aircr 40(5):857–874CrossRef Dowell E, Edwards J, Strganac T (2003) Nonlinear aeroelasticity. J Aircr 40(5):857–874CrossRef
Zurück zum Zitat Dunn P, Dugundji (1992) Nonlinear stall and divergence analysis of cantilevered graphite/epoxy wing. AIAA J 30(1):153–162CrossRefMATH Dunn P, Dugundji (1992) Nonlinear stall and divergence analysis of cantilevered graphite/epoxy wing. AIAA J 30(1):153–162CrossRefMATH
Zurück zum Zitat Eldred M, Bichon, B (2006) Second-order reliability formulations in DAKOTA/UQ. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May Eldred M, Bichon, B (2006) Second-order reliability formulations in DAKOTA/UQ. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
Zurück zum Zitat Ghommem M, Hajj M, Nayfeh A (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329(16):3335–3347CrossRef Ghommem M, Hajj M, Nayfeh A (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329(16):3335–3347CrossRef
Zurück zum Zitat Janardhan S, Grandhi R, Eastep F, Sanders B (2003) Design studies of transonic flutter and limit-cycle oscillation of an aircraft wing/tip store. In: AIAA structures, structural dynamics, and materials conference, Norfolk, VA, 7–10 April Janardhan S, Grandhi R, Eastep F, Sanders B (2003) Design studies of transonic flutter and limit-cycle oscillation of an aircraft wing/tip store. In: AIAA structures, structural dynamics, and materials conference, Norfolk, VA, 7–10 April
Zurück zum Zitat Jung H, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331CrossRefMathSciNet Jung H, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331CrossRefMathSciNet
Zurück zum Zitat Kameyama M, Fukunaga H (2007) Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters. Comput Struct 85(3):213–224CrossRef Kameyama M, Fukunaga H (2007) Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters. Comput Struct 85(3):213–224CrossRef
Zurück zum Zitat Kang B, Park G, Arora J (2006) A review of optimization of structures subjected to transient loads. Struct Multidiscipl Optim 31(2): 81–95CrossRefMathSciNet Kang B, Park G, Arora J (2006) A review of optimization of structures subjected to transient loads. Struct Multidiscipl Optim 31(2): 81–95CrossRefMathSciNet
Zurück zum Zitat Kerschen G, Golinval J, Vakakis A, Bergman L (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169CrossRefMATHMathSciNet Kerschen G, Golinval J, Vakakis A, Bergman L (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169CrossRefMATHMathSciNet
Zurück zum Zitat Kim T, Hong M, Bhatia K, SenGupta G (2005) Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J 43(12):2487–2495CrossRef Kim T, Hong M, Bhatia K, SenGupta G (2005) Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J 43(12):2487–2495CrossRef
Zurück zum Zitat Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: IFAC symposium on computer aided design of control systems, Zurich, Switzerland, pp 113–117 Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: IFAC symposium on computer aided design of control systems, Zurich, Switzerland, pp 113–117
Zurück zum Zitat Krysl P, Lall S, Marsden J (2001) Dimensional model reduction in nonlinear finite element dynamics of solids and structures. Int J Numer Methods Eng 51(4):479–504CrossRefMATHMathSciNet Krysl P, Lall S, Marsden J (2001) Dimensional model reduction in nonlinear finite element dynamics of solids and structures. Int J Numer Methods Eng 51(4):479–504CrossRefMATHMathSciNet
Zurück zum Zitat Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41):5730–5742CrossRefMATH Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41):5730–5742CrossRefMATH
Zurück zum Zitat Lindsley N, Beran P, Pettit C (2006) Integration of model reduction and probabilistic techniques with deterministic multi-physics models. In: AIAA aerospace sciences meeting and exhibit, Reno, NV, 9–12 January Lindsley N, Beran P, Pettit C (2006) Integration of model reduction and probabilistic techniques with deterministic multi-physics models. In: AIAA aerospace sciences meeting and exhibit, Reno, NV, 9–12 January
Zurück zum Zitat Lucia D, Beran P, Silva W (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40(1): 51–117CrossRef Lucia D, Beran P, Silva W (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40(1): 51–117CrossRef
Zurück zum Zitat Mani K, Mavriplis D (2009) Adjoint-based sensitivity formulation for fully coupled unsteady aeroelasticity problems. AIAA J 47(8):1902–1915CrossRef Mani K, Mavriplis D (2009) Adjoint-based sensitivity formulation for fully coupled unsteady aeroelasticity problems. AIAA J 47(8):1902–1915CrossRef
Zurück zum Zitat Maute K, Frangopol D (2003) Reliability-based design of mems mechanisms by topology optimization. Comput Struct 81(13): 813–824CrossRef Maute K, Frangopol D (2003) Reliability-based design of mems mechanisms by topology optimization. Comput Struct 81(13): 813–824CrossRef
Zurück zum Zitat Meitour J, Lucor D, Chassaing J (2010) Prediction of stochastic limit cycle oscillations using an adaptive polynomial chaos method. J Aeroel Struct Dyn 2(1):3–22 Meitour J, Lucor D, Chassaing J (2010) Prediction of stochastic limit cycle oscillations using an adaptive polynomial chaos method. J Aeroel Struct Dyn 2(1):3–22
Zurück zum Zitat Melchers R (1987) Structural reliability: analysis and prediction. Wiley, Chichester Melchers R (1987) Structural reliability: analysis and prediction. Wiley, Chichester
Zurück zum Zitat Meyer M, Matthies H (2003) Efficient model reduction in non-linear dynamics using the Karhunen–Loève expansion and dual-weighted-residual methods. Comput Mech 31(1):179–191CrossRefMATH Meyer M, Matthies H (2003) Efficient model reduction in non-linear dynamics using the Karhunen–Loève expansion and dual-weighted-residual methods. Comput Mech 31(1):179–191CrossRefMATH
Zurück zum Zitat Missoum S, Dribusch C, Beran P (2010) Reliability-based design optimization of nonlinear aeroelasticity problems. J Aircr 47(3):992–998CrossRef Missoum S, Dribusch C, Beran P (2010) Reliability-based design optimization of nonlinear aeroelasticity problems. J Aircr 47(3):992–998CrossRef
Zurück zum Zitat Nikbay M, Fakkusoglu N, Kuru M (2010) Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers. Mater Sci Eng 10(1): 1–10 Nikbay M, Fakkusoglu N, Kuru M (2010) Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers. Mater Sci Eng 10(1): 1–10
Zurück zum Zitat Odaka Y, Furuya H (2005) Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter. Struct Multidiscipl Optim 30(6)CrossRef Odaka Y, Furuya H (2005) Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter. Struct Multidiscipl Optim 30(6)CrossRef
Zurück zum Zitat Palaniappan K, Beran P, Jameson A (2006) Optimal control of LCOs in aero-structural systems. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May Palaniappan K, Beran P, Jameson A (2006) Optimal control of LCOs in aero-structural systems. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
Zurück zum Zitat Pettit C, Grandhi R (2003) Optimization of a wing structure for gust response and aileron effectiveness. J Aircr 40(6):1185–1191CrossRef Pettit C, Grandhi R (2003) Optimization of a wing structure for gust response and aileron effectiveness. J Aircr 40(6):1185–1191CrossRef
Zurück zum Zitat Pozrikidis C (2005) Introduction to finite and spectral element methods using Matlab. CRC, Boca RatonMATH Pozrikidis C (2005) Introduction to finite and spectral element methods using Matlab. CRC, Boca RatonMATH
Zurück zum Zitat Romanowski M (1996) Reduced-order unsteady aerodynamic and aeroelastic models using Karhunen–Loève eigenmodes. AIAA Paper 1996–3981 Romanowski M (1996) Reduced-order unsteady aerodynamic and aeroelastic models using Karhunen–Loève eigenmodes. AIAA Paper 1996–3981
Zurück zum Zitat Sirisup S, Karniadakis G (2004) A spectral viscosity method for correcting the long-term behavior of POD Models. J Comput Phys 194:92–116CrossRefMATHMathSciNet Sirisup S, Karniadakis G (2004) A spectral viscosity method for correcting the long-term behavior of POD Models. J Comput Phys 194:92–116CrossRefMATHMathSciNet
Zurück zum Zitat Stanford B, Beran P, Kurdi M (2010) Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction. Comput Struct 88(19):1110–1123CrossRef Stanford B, Beran P, Kurdi M (2010) Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction. Comput Struct 88(19):1110–1123CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373CrossRefMATHMathSciNet Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373CrossRefMATHMathSciNet
Zurück zum Zitat Thomas J, Dowell E, Hall K (2004) Modeling viscous transonic limit-cycle oscillation behavior using a harmonic balance approach. J Aircr 41(6):1266–1274CrossRef Thomas J, Dowell E, Hall K (2004) Modeling viscous transonic limit-cycle oscillation behavior using a harmonic balance approach. J Aircr 41(6):1266–1274CrossRef
Zurück zum Zitat Thomas J, Hall K, Dowell E (2005) Discrete adjoint approach for modeling unsteady aerodynamic design sensitivities. AIAA J 43(9):1931–1936CrossRef Thomas J, Hall K, Dowell E (2005) Discrete adjoint approach for modeling unsteady aerodynamic design sensitivities. AIAA J 43(9):1931–1936CrossRef
Zurück zum Zitat Thomas J, Dowell E, Hall K, Denegri C (2006) An investigation of the sensitivity of F-16 fighter flutter onset and limit cycle oscillations to uncertainties. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May Thomas J, Dowell E, Hall K, Denegri C (2006) An investigation of the sensitivity of F-16 fighter flutter onset and limit cycle oscillations to uncertainties. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
Zurück zum Zitat Thomas J, Dowell A, Hall K (2010) Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J 48(1):19–24CrossRef Thomas J, Dowell A, Hall K (2010) Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J 48(1):19–24CrossRef
Zurück zum Zitat Wang Q, Moin P, Iaccarino G (2009) Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM J Sci Comput 31(4):2549–2567CrossRefMATHMathSciNet Wang Q, Moin P, Iaccarino G (2009) Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM J Sci Comput 31(4):2549–2567CrossRefMATHMathSciNet
Zurück zum Zitat Xue D, Mei C (1993) Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162CrossRefMATH Xue D, Mei C (1993) Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162CrossRefMATH
Zurück zum Zitat Zienkiewicz O (1972) The finite element method. McGraw Hill, New YorkMATH Zienkiewicz O (1972) The finite element method. McGraw Hill, New YorkMATH
Metadaten
Titel
Computational strategies for reliability-based structural optimization of aeroelastic limit cycle oscillations
verfasst von
Bret Stanford
Philip Beran
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2012
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-011-0663-6

Weitere Artikel der Ausgabe 1/2012

Structural and Multidisciplinary Optimization 1/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.