Skip to main content

2011 | OriginalPaper | Buchkapitel

3. Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells

verfasst von : Fotis Sotiropoulos, Cyrus Aidun, Iman Borazjani, Robert MacMeccan

Erschienen in: Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simulation of flows in the cardiovascular system faces many challenges. Chief among these is the issue of treatment of blood flow at disparate scales. For blood flows through large vessels a Newtonian homogeneous fluid model can be adequate, while in the capillaries and in orifices and constrictions individual blood cells and interactions among blood cells assume importance. Another important feature of flows in the cardiovascular system or in the presence of cardiovascular prostheses is the interaction of blood with moving boundaries (e.g. arterial walls, heart, heart valves, and ventricular assist devices). Computational fluid dynamics has made significant progress in tackling these challenges to the extent that it is now feasible to calculate flows through parts of the cardiovascular system with a great degree of fidelity and physiological realism. This chapter presents fundamental aspects of the demands on and capabilities of numerical solution techniques for solving a variety of blood flow phenomena. Large scale flows with significant fluid inertia and small scale flows with individual blood cells are covered. Applications of the methods and sample results are shown to illustrate the state-of-the-art of computations in cardiovascular biofluid dynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297 Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297
2.
3.
Zurück zum Zitat Bagchi P, Johnson P, Popel A (2005) Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J Biomech Eng 127:1070–1080 Bagchi P, Johnson P, Popel A (2005) Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J Biomech Eng 127:1070–1080
4.
Zurück zum Zitat Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450 Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450
5.
Zurück zum Zitat Merrill E, Cokelet G, Britten A, Wells R (1963) Non-Newtonian rheology of human blood – effect of fibrinogen deduced by “subtraction”. Circ Res 13:48–55 Merrill E, Cokelet G, Britten A, Wells R (1963) Non-Newtonian rheology of human blood – effect of fibrinogen deduced by “subtraction”. Circ Res 13:48–55
6.
Zurück zum Zitat Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newton Fluid Mech 140:57–70MATH Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newton Fluid Mech 140:57–70MATH
7.
Zurück zum Zitat Sequeira A, Janela J (2007) An overview of some mathematical models of blood rheology. In: Pereira MS (ed) A portrait of state-of-the-art research at the Technical University of Lisbon. Springer, Dordrecht, pp 65 Sequeira A, Janela J (2007) An overview of some mathematical models of blood rheology. In: Pereira MS (ed) A portrait of state-of-the-art research at the Technical University of Lisbon. Springer, Dordrecht, pp 65
8.
Zurück zum Zitat Goldstein H, Poole CP, Safko JL (2002) Classical mechanics. Addison-Wesley, San Francisco, CA Goldstein H, Poole CP, Safko JL (2002) Classical mechanics. Addison-Wesley, San Francisco, CA
9.
Zurück zum Zitat Hoag D (1963) Apollo guidance and navigation, considerations of Apollo IMU Gimbal Lock. In: MIT Instrumentation Laboratory Document E-1344, MIT Hoag D (1963) Apollo guidance and navigation, considerations of Apollo IMU Gimbal Lock. In: MIT Instrumentation Laboratory Document E-1344, MIT
10.
Zurück zum Zitat Hughes PC (1986) Spacecraft attitude dynamics. Wiley, New York, NY Hughes PC (1986) Spacecraft attitude dynamics. Wiley, New York, NY
11.
Zurück zum Zitat Bathe K-J (2003) Finite element procedures. Prentice Hall, Englewood Cliffs, NJ Bathe K-J (2003) Finite element procedures. Prentice Hall, Englewood Cliffs, NJ
12.
Zurück zum Zitat Cowin SC, Doty SB (2007) Tissue mechanics. Springer, New York, NYMATH Cowin SC, Doty SB (2007) Tissue mechanics. Springer, New York, NYMATH
13.
Zurück zum Zitat Vito RP, Dixon SA (2003) Blood vessel constitutive models?1995–2002. Ann Rev Biomed Eng 5:413–439 Vito RP, Dixon SA (2003) Blood vessel constitutive models?1995–2002. Ann Rev Biomed Eng 5:413–439
14.
Zurück zum Zitat Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36:262–275 Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36:262–275
15.
Zurück zum Zitat Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATH Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATH
16.
Zurück zum Zitat Morton SA, Melville RB, Visbal MR (1997) Accuracy and coupling issues of aeroelastic Navier–Stokes solutions on deforming meshes. AIAA paper 97-1085 Morton SA, Melville RB, Visbal MR (1997) Accuracy and coupling issues of aeroelastic Navier–Stokes solutions on deforming meshes. AIAA paper 97-1085
17.
Zurück zum Zitat Vinokur M (1989) An analysis of finite-difference and finite-volume formulations of conservation-laws. J Comput Phys 81:1MATHMathSciNet Vinokur M (1989) An analysis of finite-difference and finite-volume formulations of conservation-laws. J Comput Phys 81:1MATHMathSciNet
18.
Zurück zum Zitat Warsi ZUA (2006) Fluid dynamics: theoretical and computational approaches. CRC Press, Boca Raton, FL Warsi ZUA (2006) Fluid dynamics: theoretical and computational approaches. CRC Press, Boca Raton, FL
19.
Zurück zum Zitat Yang Z, Mavriplis D (2006) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA paper 2006-441 Yang Z, Mavriplis D (2006) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA paper 2006-441
20.
Zurück zum Zitat Taylor CA, Hughes TJR, Zarins CK (1998a) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNet Taylor CA, Hughes TJR, Zarins CK (1998a) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNet
21.
Zurück zum Zitat Taylor CA, Hughes TJR, Zarins CK (1998b) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26: 975–987 Taylor CA, Hughes TJR, Zarins CK (1998b) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26: 975–987
22.
Zurück zum Zitat Qiu Y, Tarbell JM (2000) Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 122:77 Qiu Y, Tarbell JM (2000) Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 122:77
23.
Zurück zum Zitat Jin S, Oshinski J, Giddens DP (2003) Effects of wall motion and compliance on flow patterns in the ascending aorta. J Biomech Eng 125:347 Jin S, Oshinski J, Giddens DP (2003) Effects of wall motion and compliance on flow patterns in the ascending aorta. J Biomech Eng 125:347
24.
Zurück zum Zitat Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Freidman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228 Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Freidman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228
25.
Zurück zum Zitat Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142 Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142
26.
Zurück zum Zitat Cheng R, Lai YG, Chandran KB (2004) Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32:1471 Cheng R, Lai YG, Chandran KB (2004) Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32:1471
27.
Zurück zum Zitat Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195:5685–5706MATHMathSciNet Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195:5685–5706MATHMathSciNet
28.
Zurück zum Zitat Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523MATHMathSciNet Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523MATHMathSciNet
29.
Zurück zum Zitat Borazjani I (2008) Numerical simulations of fluid–structure interaction problems in biological flows. PhD thesis, University of Minnesota, Twin Cities. Borazjani I (2008) Numerical simulations of fluid–structure interaction problems in biological flows. PhD thesis, University of Minnesota, Twin Cities.
30.
Zurück zum Zitat Kim D, Choi H (2006) Immersed boundary method for flow around an arbitrarily moving body. J Comput Phys 212:662MATHMathSciNet Kim D, Choi H (2006) Immersed boundary method for flow around an arbitrarily moving body. J Comput Phys 212:662MATHMathSciNet
31.
Zurück zum Zitat Beddhu M, Taylor LK, Whitfield DL (1996) Strong conservative form of the incompressible Navier–Stokes equations in a rotating frame with a solution procedure. J Comput Phys 128:427–437MATH Beddhu M, Taylor LK, Whitfield DL (1996) Strong conservative form of the incompressible Navier–Stokes equations in a rotating frame with a solution procedure. J Comput Phys 128:427–437MATH
32.
Zurück zum Zitat Dutsch H, Durst F, Becker S, Lienhart H (1998) Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J Fluid Mech 360:249–271 Dutsch H, Durst F, Becker S, Lienhart H (1998) Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J Fluid Mech 360:249–271
33.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2009) Why don’t mackerels swim like eels? The role of form and kinematics on the hydrodynamics of undulatory swimming. Phys Fluids 21:091109 Borazjani I, Sotiropoulos F (2009) Why don’t mackerels swim like eels? The role of form and kinematics on the hydrodynamics of undulatory swimming. Phys Fluids 21:091109
34.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of body/caudal fin swimming. J Exp Biol 213:89–107 Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of body/caudal fin swimming. J Exp Biol 213:89–107
35.
Zurück zum Zitat Vyšohlíd M, Mahesh K (2006) Large eddy simulation of crashback in marine propellers. AIAA paper 1415 Vyšohlíd M, Mahesh K (2006) Large eddy simulation of crashback in marine propellers. AIAA paper 1415
36.
Zurück zum Zitat Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227:7587–7620MATHMathSciNet Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227:7587–7620MATHMathSciNet
37.
Zurück zum Zitat Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19:067105 Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19:067105
38.
Zurück zum Zitat Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D’Avenio G, Barbaro V (2005) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51:176 Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D’Avenio G, Barbaro V (2005) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51:176
39.
40.
Zurück zum Zitat Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271MATHMathSciNet Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271MATHMathSciNet
41.
Zurück zum Zitat Viecelli JA (1969) A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J Comput Phys 4:543–551MATH Viecelli JA (1969) A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J Comput Phys 4:543–551MATH
42.
Zurück zum Zitat Viecelli JA (1971) A computing method for incompressible flows bounded by moving walls. J Comput Phys 8:119–143MATH Viecelli JA (1971) A computing method for incompressible flows bounded by moving walls. J Comput Phys 8:119–143MATH
43.
44.
Zurück zum Zitat Peskin CS, McQueen DM (1980) Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comput Phys 37:113–132MATHMathSciNet Peskin CS, McQueen DM (1980) Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comput Phys 37:113–132MATHMathSciNet
45.
Zurück zum Zitat Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81:372–405MATHMathSciNet Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81:372–405MATHMathSciNet
46.
Zurück zum Zitat Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223:10–49MATHMathSciNet Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223:10–49MATHMathSciNet
47.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiphas Flow 25:755–794MATH Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiphas Flow 25:755–794MATH
48.
Zurück zum Zitat De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712 De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712
49.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic value. J Biomech 33:1079–1088 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic value. J Biomech 33:1079–1088
50.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 36:103–112 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 36:103–112
51.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37:303–311 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37:303–311
52.
Zurück zum Zitat van Loon R, Anderson PD, Baaijens FPT, van de Vosse FN (2005) A three-dimensional fluid–structure interaction method for heart valve modelling. Comptes Rendus-Mecanique 333:856–866MATH van Loon R, Anderson PD, Baaijens FPT, van de Vosse FN (2005) A three-dimensional fluid–structure interaction method for heart valve modelling. Comptes Rendus-Mecanique 333:856–866MATH
53.
Zurück zum Zitat van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numerical Methods Fluids 46:533MATH van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numerical Methods Fluids 46:533MATH
54.
Zurück zum Zitat van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217:806MATHMathSciNet van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217:806MATHMathSciNet
55.
Zurück zum Zitat Choi JI, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757–784MATHMathSciNet Choi JI, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757–784MATHMathSciNet
56.
Zurück zum Zitat Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MATHMathSciNet Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MATHMathSciNet
57.
Zurück zum Zitat Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MATHMathSciNet Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MATHMathSciNet
58.
Zurück zum Zitat Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207: 457–492MATH Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207: 457–492MATH
59.
Zurück zum Zitat Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856 Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856
60.
Zurück zum Zitat Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192:593–623MATHMathSciNet Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192:593–623MATHMathSciNet
61.
Zurück zum Zitat Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J Comput Phys 153:535–574MATH Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J Comput Phys 153:535–574MATH
62.
Zurück zum Zitat Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MATHMathSciNet Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MATHMathSciNet
63.
Zurück zum Zitat Mohd-Yosuf J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs, Center for Turbulence Research, Stanford, CA 94305-3035, USA pp 317–328 Mohd-Yosuf J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs, Center for Turbulence Research, Stanford, CA 94305-3035, USA pp 317–328
64.
Zurück zum Zitat Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATH Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATH
65.
Zurück zum Zitat Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37: 239–261MathSciNet Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37: 239–261MathSciNet
66.
Zurück zum Zitat Haines E (1994) Point in polygon strategies, Academic Press Graphics Gems Series. Academic, Boston, MA, pp 24–46 Haines E (1994) Point in polygon strategies, Academic Press Graphics Gems Series. Academic, Boston, MA, pp 24–46
67.
Zurück zum Zitat Yokoi K, Feng X, Hao L, Fukasaku K (2005) Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. J Comput Phys 202:1MATHMathSciNet Yokoi K, Feng X, Hao L, Fukasaku K (2005) Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. J Comput Phys 202:1MATHMathSciNet
68.
Zurück zum Zitat de Zélicourt DA, Ge L, Wang C, Sotiropoulos F, Gilmanova A, Yoganathan A (2009) Flow simulations in arbitrarily complex cardiovascular anatomies – an unstructured Cartesian grid approach. Comput Fluids 38:1749–1762MATH de Zélicourt DA, Ge L, Wang C, Sotiropoulos F, Gilmanova A, Yoganathan A (2009) Flow simulations in arbitrarily complex cardiovascular anatomies – an unstructured Cartesian grid approach. Comput Fluids 38:1749–1762MATH
69.
Zurück zum Zitat Sundareswaran KS, de Zelicourt D, Sharma S, Kanter KR, Spray TL, Rossignac J, Sotiropoulos F, Fogel MA, Yoganathan AP (2009) Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc Imaging 2: 1024–1030 Sundareswaran KS, de Zelicourt D, Sharma S, Kanter KR, Spray TL, Rossignac J, Sotiropoulos F, Fogel MA, Yoganathan AP (2009) Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc Imaging 2: 1024–1030
70.
Zurück zum Zitat Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197MATH Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197MATH
71.
Zurück zum Zitat Appanaboyina S, Mut F, Lohner R, Putman CM, Cebral JR (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fluids 57(5):475–493MATHMathSciNet Appanaboyina S, Mut F, Lohner R, Putman CM, Cebral JR (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fluids 57(5):475–493MATHMathSciNet
72.
Zurück zum Zitat Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247MATH Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247MATH
73.
Zurück zum Zitat Vierendeels J, Dumont K, Verdonck PR (2008) A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J Comput Appl Math 215:602–609MATHMathSciNet Vierendeels J, Dumont K, Verdonck PR (2008) A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J Comput Appl Math 215:602–609MATHMathSciNet
74.
Zurück zum Zitat Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Meth Appl Mech Eng 194:4506–4527MATHMathSciNet Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Meth Appl Mech Eng 194:4506–4527MATHMathSciNet
75.
Zurück zum Zitat Conca C, Osses A, Planchard J (1997) Added mass and damping in fluid–structure interaction. Comput Methods Appl Mech Eng 146:387–405MATHMathSciNet Conca C, Osses A, Planchard J (1997) Added mass and damping in fluid–structure interaction. Comput Methods Appl Mech Eng 146:387–405MATHMathSciNet
76.
Zurück zum Zitat Forster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNet Forster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNet
77.
Zurück zum Zitat Aitken AC (1926) On Bernoulli’s numerical solution of algebraic equations. Proc R Soc Edinb 46:289–305MATH Aitken AC (1926) On Bernoulli’s numerical solution of algebraic equations. Proc R Soc Edinb 46:289–305MATH
78.
Zurück zum Zitat Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Methods Eng 1:275–277MATH Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Methods Eng 1:275–277MATH
79.
Zurück zum Zitat Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856MATHMathSciNet Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856MATHMathSciNet
80.
Zurück zum Zitat Sleijpen GLG, Fokkema DR (1993) BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal 1:2000MathSciNet Sleijpen GLG, Fokkema DR (1993) BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal 1:2000MathSciNet
81.
Zurück zum Zitat Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid: basics, parallelism and adaptivity. Academic, New York, NY Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid: basics, parallelism and adaptivity. Academic, New York, NY
82.
Zurück zum Zitat Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110MATHMathSciNet Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110MATHMathSciNet
83.
Zurück zum Zitat Sotiropoulos F, Borazjani I (2009) A review of the state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47:245–256 Sotiropoulos F, Borazjani I (2009) A review of the state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47:245–256
84.
Zurück zum Zitat Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127:782 Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127:782
85.
Zurück zum Zitat Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng Trans ASME 125:709–718 Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng Trans ASME 125:709–718
86.
Zurück zum Zitat Gotoh K, Minamino T, Katoh O, Hamano Y, Fukui S, Hori M, Kusuoka H, Mishima M, Inoue M, Kamada T (1988) The role of intracoronary thrombus in unstable angina: angiographic assessment and thrombolytic therapy during ongoing anginal attacks. Circulation 77:526–534 Gotoh K, Minamino T, Katoh O, Hamano Y, Fukui S, Hori M, Kusuoka H, Mishima M, Inoue M, Kamada T (1988) The role of intracoronary thrombus in unstable angina: angiographic assessment and thrombolytic therapy during ongoing anginal attacks. Circulation 77:526–534
87.
Zurück zum Zitat Kiris C, Kwak D, Rogers S (1997) Computational approach for probing the flow through artificial heart devices. J Biomech Eng 119:452 Kiris C, Kwak D, Rogers S (1997) Computational approach for probing the flow through artificial heart devices. J Biomech Eng 119:452
88.
Zurück zum Zitat Mody N, Lomakin O, Doggett T, Diacovo T, King M (2005) Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88:1432–1443 Mody N, Lomakin O, Doggett T, Diacovo T, King M (2005) Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88:1432–1443
89.
Zurück zum Zitat Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12:772 Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12:772
90.
Zurück zum Zitat Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng Trans ASME 124:21–29 Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng Trans ASME 124:21–29
91.
Zurück zum Zitat Pedrizzetti G (2005) Kinematic characterization of valvular opening. Phys Rev Lett 94:194502 Pedrizzetti G (2005) Kinematic characterization of valvular opening. Phys Rev Lett 94:194502
92.
Zurück zum Zitat Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321–330MATH Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321–330MATH
93.
Zurück zum Zitat Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19:835–850 Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19:835–850
94.
Zurück zum Zitat Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85:749–762 Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85:749–762
95.
Zurück zum Zitat Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41:2539–2550 Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41:2539–2550
96.
Zurück zum Zitat De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622: 259–290MATH De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622: 259–290MATH
97.
Zurück zum Zitat Borazjani I, Ge L, Sotiropoulos F (2010) High resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344. doi:10.1007/s10439-009-9807-x Borazjani I, Ge L, Sotiropoulos F (2010) High resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344. doi:10.1007/s10439-009-9807-x
98.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bi-leaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. ASME J Biomech Eng. doi:10.1115/1.4002491 Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bi-leaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. ASME J Biomech Eng. doi:10.1115/1.4002491
99.
Zurück zum Zitat Ge L, Sotiropoulos F (2010) Direction and magnitude of hemodynamic stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 131:0145051–014509 Ge L, Sotiropoulos F (2010) Direction and magnitude of hemodynamic stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 131:0145051–014509
100.
Zurück zum Zitat Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP (2008) Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech 41:1510–1519 Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP (2008) Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech 41:1510–1519
101.
Zurück zum Zitat Davies PF, Shi C, DePaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–17 Davies PF, Shi C, DePaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–17
102.
Zurück zum Zitat Alevriadou R, Moake J, Turner N, Ruggeri Z, Folie B, Phillips M, Schreiber A, Hrinda M, McIntire L (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81:1263–1276 Alevriadou R, Moake J, Turner N, Ruggeri Z, Folie B, Phillips M, Schreiber A, Hrinda M, McIntire L (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81:1263–1276
103.
Zurück zum Zitat Kulkarni S, Dopheide S, Yap C, Ravanat R, Freund M, Mangin P, Heel K, Street A, Harper I, Lanza F et al (2000) A revised model of platelet aggregation. J Clin Invest 105:783–791 Kulkarni S, Dopheide S, Yap C, Ravanat R, Freund M, Mangin P, Heel K, Street A, Harper I, Lanza F et al (2000) A revised model of platelet aggregation. J Clin Invest 105:783–791
104.
Zurück zum Zitat Munn L, Melder R, Jain R (1996) Role of erythrocytes in leukocyte–endothelial interactions: mathematical model and experimental validation. Biophys J 71:466–478 Munn L, Melder R, Jain R (1996) Role of erythrocytes in leukocyte–endothelial interactions: mathematical model and experimental validation. Biophys J 71:466–478
105.
Zurück zum Zitat Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222 Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222
106.
Zurück zum Zitat Sloop G (1998) Insights into the relationship of fatty streaks to raised atherosclerotic lesions provided by the hemorheologic–hemodynamic theory of atherogenesis. Med Hypotheses 51:385–388 Sloop G (1998) Insights into the relationship of fatty streaks to raised atherosclerotic lesions provided by the hemorheologic–hemodynamic theory of atherogenesis. Med Hypotheses 51:385–388
107.
Zurück zum Zitat Turitto V, Weiss H, Baumgartner H (1980) The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res 19:352 Turitto V, Weiss H, Baumgartner H (1980) The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res 19:352
108.
Zurück zum Zitat Goldsmith H, Bell D, Spain S, McIntosh F (1999) Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36:461–468 Goldsmith H, Bell D, Spain S, McIntosh F (1999) Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36:461–468
109.
Zurück zum Zitat Goldsmith H, Kaufer E, McIntosh F (1995) Effect of hematocrit on adenine diphosphate-induced aggregation of human platelets in tube flow. Biorheology 32:537–552 Goldsmith H, Kaufer E, McIntosh F (1995) Effect of hematocrit on adenine diphosphate-induced aggregation of human platelets in tube flow. Biorheology 32:537–552
110.
Zurück zum Zitat Aarts P, van den Broek S, Prins G, Kuiken G, Sixma J, Heehaar R (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8:819–824 Aarts P, van den Broek S, Prins G, Kuiken G, Sixma J, Heehaar R (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8:819–824
111.
Zurück zum Zitat Wootton D, Markou C, Hanson S, Ku D (2001) A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng 29:321–329 Wootton D, Markou C, Hanson S, Ku D (2001) A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng 29:321–329
112.
Zurück zum Zitat Cha W, Beissinger R (1996) Augmented mass transport of macromolecules in sheared suspensions to surfaces B. Bovine serum albumin. J Colloid Interf Sci 178:1–9 Cha W, Beissinger R (1996) Augmented mass transport of macromolecules in sheared suspensions to surfaces B. Bovine serum albumin. J Colloid Interf Sci 178:1–9
113.
Zurück zum Zitat Dao M, Limb CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280 Dao M, Limb CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280
114.
Zurück zum Zitat Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143MATHMathSciNet Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143MATHMathSciNet
115.
Zurück zum Zitat Breyiannis G, Pozrikidis C (2000) Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn 13:327–347MATH Breyiannis G, Pozrikidis C (2000) Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn 13:327–347MATH
116.
Zurück zum Zitat Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291MATH Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291MATH
117.
Zurück zum Zitat Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–1205 Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–1205
118.
Zurück zum Zitat Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33:165–178 Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33:165–178
119.
Zurück zum Zitat Eggleton C, Popel A (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10:1834–1845 Eggleton C, Popel A (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10:1834–1845
120.
Zurück zum Zitat Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys Arch 220(1):139–154. ISSN:0021-9991 Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys Arch 220(1):139–154. ISSN:0021-9991
121.
Zurück zum Zitat Liu WK, Liu Y, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J et al (2006a) Immersed finite element method and its applications to biological systems. Comput. Methods Appl Mech Eng 195:1722–1749MATHMathSciNet Liu WK, Liu Y, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J et al (2006a) Immersed finite element method and its applications to biological systems. Comput. Methods Appl Mech Eng 195:1722–1749MATHMathSciNet
122.
Zurück zum Zitat Liu X, Tang Z, Zeng Z, Chen X, Yao W, Yan Z, Shi Y, Shan H, Sun D, He D, Wen Z (2007) The measurement of shear modulus and membrane surface viscosity of RBC membrane with ektacytometry: a new technique. Math Biosci 209(1):190–204 Liu X, Tang Z, Zeng Z, Chen X, Yao W, Yan Z, Shi Y, Shan H, Sun D, He D, Wen Z (2007) The measurement of shear modulus and membrane surface viscosity of RBC membrane with ektacytometry: a new technique. Math Biosci 209(1):190–204
123.
Zurück zum Zitat Dzwinel W, Boryczko K, Yuen D (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interf Sci 258(1):163–173 Dzwinel W, Boryczko K, Yuen D (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interf Sci 258(1):163–173
124.
Zurück zum Zitat Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83:139–146 Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83:139–146
125.
Zurück zum Zitat Dupin M, Halliday I, Care C (2006) A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med Eng Phys 8:3–18 Dupin M, Halliday I, Care C (2006) A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med Eng Phys 8:3–18
126.
Zurück zum Zitat Hyakutake T, Matsumoto T, Yanase S (2006) Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math Comput Simul 72:134–140MATHMathSciNet Hyakutake T, Matsumoto T, Yanase S (2006) Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math Comput Simul 72:134–140MATHMathSciNet
127.
Zurück zum Zitat MacMeccan R, Clausen J, Neitzel P, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39MATHMathSciNet MacMeccan R, Clausen J, Neitzel P, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39MATHMathSciNet
128.
Zurück zum Zitat Wu J, Aidun CK (2009) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62(7):765–783. doi:10.1002/fld.2043 Wu J, Aidun CK (2009) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62(7):765–783. doi:10.1002/fld.2043
129.
Zurück zum Zitat Dzwinel W, Yuen D (2002) Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model. J Colloid Interf Sci 247(2):463–480 Dzwinel W, Yuen D (2002) Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model. J Colloid Interf Sci 247(2):463–480
130.
Zurück zum Zitat Aidun C, Lu Y, Ding EJ (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287–311MATH Aidun C, Lu Y, Ding EJ (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287–311MATH
131.
Zurück zum Zitat Qi D (1999) Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech 385:41–62MATHMathSciNet Qi D (1999) Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech 385:41–62MATHMathSciNet
132.
Zurück zum Zitat Ding E, Aidun C (2000) The dynamics and scaling law for particles suspended in shear flow with inertia. J Fluid Mech 423:317–344MATH Ding E, Aidun C (2000) The dynamics and scaling law for particles suspended in shear flow with inertia. J Fluid Mech 423:317–344MATH
133.
Zurück zum Zitat Ding E, Aidun C (2003) Extension of the lattice-Boltzmann method or direct simulation of suspended particles near contact. J Stat Phys 112:685–707MATH Ding E, Aidun C (2003) Extension of the lattice-Boltzmann method or direct simulation of suspended particles near contact. J Stat Phys 112:685–707MATH
134.
Zurück zum Zitat Ding E, Aidun C (2006) Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number. Phys Rev Lett 96:204502-1–204502-4 Ding E, Aidun C (2006) Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number. Phys Rev Lett 96:204502-1–204502-4
135.
Zurück zum Zitat Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle–fluid suspensions. J Stat Phys 104:1191–1251MATHMathSciNet Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle–fluid suspensions. J Stat Phys 104:1191–1251MATHMathSciNet
136.
Zurück zum Zitat Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for Complex Flows. Annu Rev Fluid Mech 42:439–72 Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for Complex Flows. Annu Rev Fluid Mech 42:439–72
137.
Zurück zum Zitat Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364MathSciNet Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364MathSciNet
138.
Zurück zum Zitat McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332–2335 McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332–2335
139.
Zurück zum Zitat MacMeccan R, Atlanta GA (2007) Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD Thesis, Georgia Institute of Technology, Atlanta, GA MacMeccan R, Atlanta GA (2007) Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD Thesis, Georgia Institute of Technology, Atlanta, GA
140.
Zurück zum Zitat Clausen J, Aidun CK (2009) Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int J Multiphas Flow 35:307–311 Clausen J, Aidun CK (2009) Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int J Multiphas Flow 35:307–311
141.
Zurück zum Zitat Rankin C, Brogan F (1986) An element independent corotational procedure for the treatments of large rotations. J Press Vessel Technol 108:165–174 Rankin C, Brogan F (1986) An element independent corotational procedure for the treatments of large rotations. J Press Vessel Technol 108:165–174
142.
Zurück zum Zitat Campanelli M, Berzeri M, Shabana A (2000) Performance of the incremental and non-incremental finite elements formulations in flexible multibody problems. J Mech Des 122:498–507 Campanelli M, Berzeri M, Shabana A (2000) Performance of the incremental and non-incremental finite elements formulations in flexible multibody problems. J Mech Des 122:498–507
143.
Zurück zum Zitat Moller T, Trumbore B (1977) Fast, minimum storage ray-triangle intersection. J Graph Tools 2:21–28 Moller T, Trumbore B (1977) Fast, minimum storage ray-triangle intersection. J Graph Tools 2:21–28
144.
Zurück zum Zitat Buxton G, Verberg R, Jasnow D, Balazs A (2005) Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Phys Rev E 71:56707. Buxton G, Verberg R, Jasnow D, Balazs A (2005) Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Phys Rev E 71:56707.
145.
Zurück zum Zitat Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26: 115–132 Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26: 115–132
146.
Zurück zum Zitat Evans A, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595 Evans A, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595
147.
Zurück zum Zitat Hwang W, Waugh R (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J 72:2669–2678 Hwang W, Waugh R (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J 72:2669–2678
148.
Zurück zum Zitat Tozeren A, Skalak R, Fedorcix K, Sung K, Chien S (1984) Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration. Biophys J 45:541–549 Tozeren A, Skalak R, Fedorcix K, Sung K, Chien S (1984) Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration. Biophys J 45:541–549
149.
Zurück zum Zitat Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear:spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann N Y Acad Sci 416:225–254 Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear:spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann N Y Acad Sci 416:225–254
150.
Zurück zum Zitat Skalak R, Tozeren S, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264 Skalak R, Tozeren S, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264
151.
Zurück zum Zitat Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222MATH Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222MATH
152.
Zurück zum Zitat Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC, Boca Raton, FL Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC, Boca Raton, FL
153.
Zurück zum Zitat Harkness J, Whittington R (1970) Blood-plasma viscosity: an approximate temperature-invariant arising from generalized concepts. Biorheology 6:169–187 Harkness J, Whittington R (1970) Blood-plasma viscosity: an approximate temperature-invariant arising from generalized concepts. Biorheology 6:169–187
154.
Zurück zum Zitat Aarts P, Stendijk P, Sixma J, Heethaar R (1986) Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J Biomech 19:799–805 Aarts P, Stendijk P, Sixma J, Heethaar R (1986) Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J Biomech 19:799–805
155.
Zurück zum Zitat Jung J, Lyczkowski R, Panchal C, Hassanein A (2006) Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech 39:2064–2073 Jung J, Lyczkowski R, Panchal C, Hassanein A (2006) Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech 39:2064–2073
156.
Zurück zum Zitat Yao W, Yan Z, Sun D, Ka W, Xie L, Chien S (2004) Low viscosity ektacytometry and its validation tested by flow chamber. J Biomech 34:1501–1509 Yao W, Yan Z, Sun D, Ka W, Xie L, Chien S (2004) Low viscosity ektacytometry and its validation tested by flow chamber. J Biomech 34:1501–1509
157.
Zurück zum Zitat Batchelor G (1970) The stress in a suspension of force-free particles. J Fluid Mech 43: 545–570MathSciNet Batchelor G (1970) The stress in a suspension of force-free particles. J Fluid Mech 43: 545–570MathSciNet
158.
Zurück zum Zitat Fung Y (1993) Biomechanics mechanical properties of living tissues. Springer, New York, NY Fung Y (1993) Biomechanics mechanical properties of living tissues. Springer, New York, NY
159.
Zurück zum Zitat Haga J, Beaudoin A, White J, Strony J (1998) Quantification of the passive mechanical properties of the resting platelet. Ann Biomed Eng 26:268–277 Haga J, Beaudoin A, White J, Strony J (1998) Quantification of the passive mechanical properties of the resting platelet. Ann Biomed Eng 26:268–277
160.
Zurück zum Zitat Goldsmith H, Marlow J (1979) Flow behavior of erythrocytes II. Particle motions in concentrated suspensions of ghost Cells. J Colloid Interf Sci 71:383–407 Goldsmith H, Marlow J (1979) Flow behavior of erythrocytes II. Particle motions in concentrated suspensions of ghost Cells. J Colloid Interf Sci 71:383–407
161.
Zurück zum Zitat Le T, Borazjani I, Sotiropoulos F (2010) Vorticity dynamics in an intracranial aneurysm. ASME J Biomech Eng (In Press) Le T, Borazjani I, Sotiropoulos F (2010) Vorticity dynamics in an intracranial aneurysm. ASME J Biomech Eng (In Press)
162.
Zurück zum Zitat Shojima M, Oshima M, Takagi K, Torii R, Nagata K, Shirouzu I, Morita A, Kirino T (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938 Shojima M, Oshima M, Takagi K, Torii R, Nagata K, Shirouzu I, Morita A, Kirino T (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938
163.
Zurück zum Zitat Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24:559–566 Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24:559–566
164.
Zurück zum Zitat Wolters B, Rutten MCM, Schurink GWH, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med Eng Phys 27:871–883 Wolters B, Rutten MCM, Schurink GWH, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med Eng Phys 27:871–883
165.
Zurück zum Zitat Pekkan K, ZÃlicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33:284–300 Pekkan K, ZÃlicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33:284–300
Metadaten
Titel
Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells
verfasst von
Fotis Sotiropoulos
Cyrus Aidun
Iman Borazjani
Robert MacMeccan
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7350-4_3

Neuer Inhalt