Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2020

03.05.2019 | Research Article - Electrical Engineering

Computationally Optimized MIMO Antenna with Improved Isolation and Extended Bandwidth for UWB Applications

verfasst von: Madan Kumar Sharma, Mithilesh Kumar, J. P. Saini, Satya P. Singh

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isolation and bandwidth are the two important performance parameters of the multiple-input-multiple-output (MIMO) antenna. A small footprint of an antenna with enhanced isolation and extended bandwidth is highly desirable for space-limited UWB applications. In this paper, we present a compact and computationally optimized MIMO antenna for UWB applications. The proposed antenna consists of two micro-strip-fed semicircular radiating elements. The inverted prism-shaped ground stub is used to enhance isolation. A truncated-shaped partial ground plane with two ground slots is used for impedance matching over the extended UWB. The circular monopole radiating elements of the reference antenna (RA) are converted into semicircular radiating elements for efficient utilization of the available space. The initial design parameters are obtained from the RA. In the next step, the initial design parameters are optimized by a fast and accurate surrogate-assisted optimization model. Using the optimized design parameters, the final design of the antenna is simulated using a computer simulation tool. The prototype of the antenna is fabricated on a Roger substrate (substrate height ‘h’ = 0.8 mm) with a dielectric constant of 3. The manufactured prototype with the size of 31 × 18 mm2 is experimentally evaluated and validated using vector network analyser and anechoic chamber. The proposed MIMO antenna provides extended ultra-wide impedance bandwidth of 3–25 GHz (fractional bandwidth 157%), enhanced isolation S21 ≤ − 27 dB envelope correlation coefficient (ECC = 0.002), good pattern diversity, and constant group delay. Finally, the obtained results are compared with the existing literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sultan, J.; Misran, N.; Ismail, M.; Islam, M.T.: Topology-aware macro diversity handover technique for IEEE 802.16 j multi-hop cellular networks. IET Commun. 5, 700–708 (2011)CrossRef Sultan, J.; Misran, N.; Ismail, M.; Islam, M.T.: Topology-aware macro diversity handover technique for IEEE 802.16 j multi-hop cellular networks. IET Commun. 5, 700–708 (2011)CrossRef
3.
Zurück zum Zitat Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8, 742–758 (2014)CrossRef Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8, 742–758 (2014)CrossRef
4.
Zurück zum Zitat Khan, M.S.; Capobianco, A.D.; Asif, S.M.; Anagnostou, D.E.; Shubair, R.M.; Braaten, B.D.: A compact CSRR-enabled UWB diversity antenna. IEEE Antennas Wirel. Propag. Lett. 16, 808–812 (2017)CrossRef Khan, M.S.; Capobianco, A.D.; Asif, S.M.; Anagnostou, D.E.; Shubair, R.M.; Braaten, B.D.: A compact CSRR-enabled UWB diversity antenna. IEEE Antennas Wirel. Propag. Lett. 16, 808–812 (2017)CrossRef
5.
Zurück zum Zitat Sharawi, M.S.: A 5-GHz 4/8-element MIMO antenna system for IEEE 802.11AC devices. Microw. Opt. Technol. Lett. 55(7), 1589–1594 (2013)CrossRef Sharawi, M.S.: A 5-GHz 4/8-element MIMO antenna system for IEEE 802.11AC devices. Microw. Opt. Technol. Lett. 55(7), 1589–1594 (2013)CrossRef
6.
Zurück zum Zitat Iqbal, A.; Saraereh, O.A.; Ahmad, A.W.; Bashir, S.: Mutual coupling reduction using F-shaped stubs in UWB-MIMO Antenna. IEEE Access 6, 2755–2759 (2018)CrossRef Iqbal, A.; Saraereh, O.A.; Ahmad, A.W.; Bashir, S.: Mutual coupling reduction using F-shaped stubs in UWB-MIMO Antenna. IEEE Access 6, 2755–2759 (2018)CrossRef
7.
Zurück zum Zitat Lin, G.S.; Sung, C.H.; Chen, J.L.; Chen, L.S.; Houng, M.P.: Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas Wirel. Propag. Lett. 16, 222–225 (2017)CrossRef Lin, G.S.; Sung, C.H.; Chen, J.L.; Chen, L.S.; Houng, M.P.: Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas Wirel. Propag. Lett. 16, 222–225 (2017)CrossRef
8.
Zurück zum Zitat Najam, A.; Duroc, Y.; Tedjni, S.: UWB-MIMO antenna with novel stub structure. Prog. Electromagn. Res. 19, 245–247 (2011)CrossRef Najam, A.; Duroc, Y.; Tedjni, S.: UWB-MIMO antenna with novel stub structure. Prog. Electromagn. Res. 19, 245–247 (2011)CrossRef
9.
Zurück zum Zitat Mathur, R.; Dwari, S.: Compact CPW-Fed ultrawideband MIMO antenna using hexagonal ring monopole antenna elements. AEU Int. J. Electron. Commun. 93, 1–6 (2018)CrossRef Mathur, R.; Dwari, S.: Compact CPW-Fed ultrawideband MIMO antenna using hexagonal ring monopole antenna elements. AEU Int. J. Electron. Commun. 93, 1–6 (2018)CrossRef
10.
Zurück zum Zitat Zhang, S.; Pedersen, G.F.: Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 15, 166–169 (2016)CrossRef Zhang, S.; Pedersen, G.F.: Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 15, 166–169 (2016)CrossRef
11.
Zurück zum Zitat Su, S.W.; Lee, C.T.; Chen, S.C.: Very-low-profile, triband, two-antenna system for WLAN notebook computers. IEEE Antennas Wirel. Propag. Lett. 17, 1626–1629 (2018)CrossRef Su, S.W.; Lee, C.T.; Chen, S.C.: Very-low-profile, triband, two-antenna system for WLAN notebook computers. IEEE Antennas Wirel. Propag. Lett. 17, 1626–1629 (2018)CrossRef
12.
Zurück zum Zitat Su, S.W.; Lee, C.T.; Chang, F.S.: Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Trans. Antennas Propag. 60, 456–463 (2012)CrossRef Su, S.W.; Lee, C.T.; Chang, F.S.: Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Trans. Antennas Propag. 60, 456–463 (2012)CrossRef
13.
Zurück zum Zitat Singh, S.P.; Urooj, S.; Lay-Ekuakille, A.: Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sens. J. 16, 4847–4855 (2016)CrossRef Singh, S.P.; Urooj, S.; Lay-Ekuakille, A.: Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sens. J. 16, 4847–4855 (2016)CrossRef
14.
Zurück zum Zitat Cao, Y.; Wang, G.; Zhang, Q.J.: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions. IEEE Trans. Microw. Theory Tech. 57, 2727–2742 (2009)CrossRef Cao, Y.; Wang, G.; Zhang, Q.J.: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions. IEEE Trans. Microw. Theory Tech. 57, 2727–2742 (2009)CrossRef
15.
Zurück zum Zitat Wang, Z.; Fang, S.; Wang, Q.; Liu, H.: An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners. IEEE Trans. Antennas Propag. 60, 5989–5992 (2012)CrossRef Wang, Z.; Fang, S.; Wang, Q.; Liu, H.: An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners. IEEE Trans. Antennas Propag. 60, 5989–5992 (2012)CrossRef
16.
Zurück zum Zitat Delgado, H.J.; Thursby, M.H.: A novel neural network combined with FDTD for the synthesis of a printed dipole antenna. IEEE Trans. Antennas Propag. 53, 2231–2236 (2005)CrossRef Delgado, H.J.; Thursby, M.H.: A novel neural network combined with FDTD for the synthesis of a printed dipole antenna. IEEE Trans. Antennas Propag. 53, 2231–2236 (2005)CrossRef
17.
Zurück zum Zitat Akdagli, A.; Güney, K.; Karaboga, D.: Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm. J. Electromagn. Waves Appl. 16(10), 1423–1441 (2002)CrossRef Akdagli, A.; Güney, K.; Karaboga, D.: Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm. J. Electromagn. Waves Appl. 16(10), 1423–1441 (2002)CrossRef
18.
Zurück zum Zitat Islam, M.; Misran, N.; Take, T.C.: Optimization of microstrip patch antenna using particle swarm optimization with curve fitting. In: ICEEI’09. International Conference (2009) Islam, M.; Misran, N.; Take, T.C.: Optimization of microstrip patch antenna using particle swarm optimization with curve fitting. In: ICEEI’09. International Conference (2009)
19.
Zurück zum Zitat Jin, N.; Rahmat-Samii, Y.: Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)CrossRef Jin, N.; Rahmat-Samii, Y.: Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)CrossRef
20.
Zurück zum Zitat Recioui, A.; Azrar, A.; Bentarzi, H.; Dehmas, M.; Chalal, M.: Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms. Int. J. Microw. Opt. Technol. 3, 524–530 (2008) Recioui, A.; Azrar, A.; Bentarzi, H.; Dehmas, M.; Chalal, M.: Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms. Int. J. Microw. Opt. Technol. 3, 524–530 (2008)
21.
Zurück zum Zitat Recioui, A.; Azrar, A.: Use of genetic algorithms in linear and planar antenna array synthesis based on Schelkunoff method. Microw. Opt. Technol. Lett. 49(7), 1619–1623 (2007)CrossRef Recioui, A.; Azrar, A.: Use of genetic algorithms in linear and planar antenna array synthesis based on Schelkunoff method. Microw. Opt. Technol. Lett. 49(7), 1619–1623 (2007)CrossRef
22.
Zurück zum Zitat Datta, R.; Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl. 57, 270–284 (2016)CrossRef Datta, R.; Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl. 57, 270–284 (2016)CrossRef
25.
Zurück zum Zitat Li, S.; Feng, L.; Benner, P.; Seidel-Morgenstern, A.: Using surrogate models for efficient optimization of simulated moving bed chromatography. Comput. Chem. Eng. 67, 121–132 (2014)CrossRef Li, S.; Feng, L.; Benner, P.; Seidel-Morgenstern, A.: Using surrogate models for efficient optimization of simulated moving bed chromatography. Comput. Chem. Eng. 67, 121–132 (2014)CrossRef
26.
Zurück zum Zitat Sharma, M.; Kumar, M.: UWB-MIMO diversity antenna for next generation wireless applications. In: 2016 3rd International Conference Computing for Sustainable Global Development (INDIACom), pp. 1528–1532 Sharma, M.; Kumar, M.: UWB-MIMO diversity antenna for next generation wireless applications. In: 2016 3rd International Conference Computing for Sustainable Global Development (INDIACom), pp. 1528–1532
27.
Zurück zum Zitat Balanis, C.: Modern Antenna Handbook. Wiley, Hoboken (2011) Balanis, C.: Modern Antenna Handbook. Wiley, Hoboken (2011)
28.
Zurück zum Zitat Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Norwood (2001) Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Norwood (2001)
29.
Zurück zum Zitat Balanis, C.A.; Ioannides, P.I.: Introduction to smart antennas. Synth. Lect. Antennas 2(1), 1–175 (2007)CrossRef Balanis, C.A.; Ioannides, P.I.: Introduction to smart antennas. Synth. Lect. Antennas 2(1), 1–175 (2007)CrossRef
30.
Zurück zum Zitat Koziel, S.; Bekasiewicz, A.; Cheng, Q.S.: Conceptual design and automated optimisation of a novel compact UWB MIMO slot antenna. IET Microw. Antennas Propag. 11, 1162–1168 (2017)CrossRef Koziel, S.; Bekasiewicz, A.; Cheng, Q.S.: Conceptual design and automated optimisation of a novel compact UWB MIMO slot antenna. IET Microw. Antennas Propag. 11, 1162–1168 (2017)CrossRef
31.
Zurück zum Zitat Blanch, S.; Romeu, J.; Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. IET Electron. Lett. 39, 705–707 (2003)CrossRef Blanch, S.; Romeu, J.; Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. IET Electron. Lett. 39, 705–707 (2003)CrossRef
32.
Zurück zum Zitat Gesbert, D.; Kountouris, M.; Heath, R.W.; Chae, C.B.; Salzer, T.: Shifting the MIMO paradigm: from single user to multiuser communications. IEEE Signal Process. Mag. 24, 36–46 (2007)CrossRef Gesbert, D.; Kountouris, M.; Heath, R.W.; Chae, C.B.; Salzer, T.: Shifting the MIMO paradigm: from single user to multiuser communications. IEEE Signal Process. Mag. 24, 36–46 (2007)CrossRef
33.
Zurück zum Zitat Wiesbeck, W.; Adamiuk, G.; Sturm, C.: Basic properties and design principles of UWB antennas. Proc. IEEE 97, 372–385 (2009)CrossRef Wiesbeck, W.; Adamiuk, G.; Sturm, C.: Basic properties and design principles of UWB antennas. Proc. IEEE 97, 372–385 (2009)CrossRef
34.
Zurück zum Zitat Dabas, T.; Gangwar, D.; Kanaujia, B.K.; Gautam, A.K.: Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU Int. J. Electron. Commun. 93, 32–38 (2018)CrossRef Dabas, T.; Gangwar, D.; Kanaujia, B.K.; Gautam, A.K.: Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU Int. J. Electron. Commun. 93, 32–38 (2018)CrossRef
Metadaten
Titel
Computationally Optimized MIMO Antenna with Improved Isolation and Extended Bandwidth for UWB Applications
verfasst von
Madan Kumar Sharma
Mithilesh Kumar
J. P. Saini
Satya P. Singh
Publikationsdatum
03.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03888-6

Weitere Artikel der Ausgabe 3/2020

Arabian Journal for Science and Engineering 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.