Skip to main content
Erschienen in: Cognitive Computation 1/2021

20.02.2020

Computer-Aided Dementia Diagnosis Based on Hierarchical Extreme Learning Machine

verfasst von: Zhongyang Wang, Junchang Xin, Zhiqiong Wang, Huizi Gu, Yue Zhao, Wei Qian

Erschienen in: Cognitive Computation | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The deep learning–based computer-aided diagnosis (CADx) approaches of dementia often require a lot of manual intervention. Although deep learning has a good effect on feature extraction, the current deep learning methods usually need to set a large number of parameters manually, which is time consuming. Hierarchical extreme learning machine (H-ELM) needs only less manual intervention and can extract features by a multi-layer feature representation framework, which is much faster than the traditional deep learning methods. A CADx framework based on H-ELM, named DCADx, is proposed. As common spatial pattern (CSP) and brain functional network (BFN) have been proven to have better de-redundancy effects on brain data, the DCADx contains two different data redundancy reduction methods: (1) CSP-based DCADx (i.e., DCADx-CSP model) and (2) BFN-based DCADx (i.e., DCADx-BFN model). The experimental evaluation proved the effectiveness of the proposed algorithms. The DCADx-CSP model obtained 83.2% on Alzheimer’s disease and 82.5% on Parkinson’s disease. The DCADx-BFN obtained 89.3% on Alzheimer’s disease and 88.7% on Parkinson’s disease. DCADx can make full use of the feature expression ability of H-ELM to achieve better performance. CSP and BFN can reduce the redundancy to enhance the diagnostic accuracy further.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wimo A, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13:1–7.CrossRef Wimo A, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13:1–7.CrossRef
2.
Zurück zum Zitat Misiewicz S, Brickman AM, Tosto G. Prosodic impairment in dementia: review of the literature. Curr Alzheimer Res 2018;15:157–63.CrossRef Misiewicz S, Brickman AM, Tosto G. Prosodic impairment in dementia: review of the literature. Curr Alzheimer Res 2018;15:157–63.CrossRef
3.
Zurück zum Zitat Shi F, et al. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput 2018;11:227–40.CrossRef Shi F, et al. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput 2018;11:227–40.CrossRef
4.
Zurück zum Zitat Makaronidis JM, Batterham RL. Obesity, body weight regulation The brain Insights from fMRI. Br J Radiol 2018;91:20170910.CrossRef Makaronidis JM, Batterham RL. Obesity, body weight regulation The brain Insights from fMRI. Br J Radiol 2018;91:20170910.CrossRef
6.
Zurück zum Zitat Rathore S, Habes M, Aksam IM, Shacklett A, Davatzikos C. A review on neuroimaging-based classification sstudies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 2017;155:530–48.CrossRef Rathore S, Habes M, Aksam IM, Shacklett A, Davatzikos C. A review on neuroimaging-based classification sstudies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 2017;155:530–48.CrossRef
10.
Zurück zum Zitat Zaharchuk G, Gong E, Wintermark M. Rubind, Langlotz P. Deep learning in neuroradiology. Am J Neuroradiol 2018;39:1776–84.CrossRef Zaharchuk G, Gong E, Wintermark M. Rubind, Langlotz P. Deep learning in neuroradiology. Am J Neuroradiol 2018;39:1776–84.CrossRef
11.
Zurück zum Zitat Sarraf S, Tofighi G. Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. Proceedings of 2016 future technologties conference. San Francisco: IEEE Press; 2017, pp. 816–20. Sarraf S, Tofighi G. Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. Proceedings of 2016 future technologties conference. San Francisco: IEEE Press; 2017, pp. 816–20.
12.
Zurück zum Zitat Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 2017;4:809–21.MathSciNet Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 2017;4:809–21.MathSciNet
13.
Zurück zum Zitat Duan L, et al. Motor Imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 2017;9:758–65.CrossRef Duan L, et al. Motor Imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 2017;9:758–65.CrossRef
14.
Zurück zum Zitat Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 2011;58:355–2.CrossRef Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 2011;58:355–2.CrossRef
15.
Zurück zum Zitat Zhang Y, et al. Multi-kernel e learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 2018;96:302–10.CrossRef Zhang Y, et al. Multi-kernel e learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 2018;96:302–10.CrossRef
16.
Zurück zum Zitat Atluri G, et al. The vrain-network paradigm: using functional imaging data to study how the brain works. Computer 2016;49:65–71.CrossRef Atluri G, et al. The vrain-network paradigm: using functional imaging data to study how the brain works. Computer 2016;49:65–71.CrossRef
17.
Zurück zum Zitat Lee YB, Yoo K, Roh JH, Moon WJ, Jeong Y. Brain-state extraction algorithm based on the state transition (best): a dynamic functional brain network analysis in fmri study. Brain Topogr 2019;32:897–13.CrossRef Lee YB, Yoo K, Roh JH, Moon WJ, Jeong Y. Brain-state extraction algorithm based on the state transition (best): a dynamic functional brain network analysis in fmri study. Brain Topogr 2019;32:897–13.CrossRef
18.
Zurück zum Zitat Li X, Hu Z, Wang H. Combining non-negative matrix factorization and sparse coding for functional brain overlapping community detection. Cogn Comput 2018;10:991–05.CrossRef Li X, Hu Z, Wang H. Combining non-negative matrix factorization and sparse coding for functional brain overlapping community detection. Cogn Comput 2018;10:991–05.CrossRef
20.
Zurück zum Zitat Li P, et al. Structural and functional brain network of human retrosplenial cortex. Neurosci Lett 2018;674: 24–9.CrossRef Li P, et al. Structural and functional brain network of human retrosplenial cortex. Neurosci Lett 2018;674: 24–9.CrossRef
22.
Zurück zum Zitat Mostafavi S, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci 2018;21:811–9.CrossRef Mostafavi S, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci 2018;21:811–9.CrossRef
23.
Zurück zum Zitat Chong J, et al. Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease. Brain 2017;140:3012–22.CrossRef Chong J, et al. Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease. Brain 2017;140:3012–22.CrossRef
24.
Zurück zum Zitat Sulaimany S, et al. Predicting brain network changes in Alzheimer’s disease with link prediction algorithms. Mol Biosyst 2017;13:725–35.CrossRef Sulaimany S, et al. Predicting brain network changes in Alzheimer’s disease with link prediction algorithms. Mol Biosyst 2017;13:725–35.CrossRef
25.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006; 70:489–01.CrossRef Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006; 70:489–01.CrossRef
26.
Zurück zum Zitat Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2: 107–22.CrossRef Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2: 107–22.CrossRef
27.
Zurück zum Zitat Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70:3056–62.CrossRef Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70:3056–62.CrossRef
28.
Zurück zum Zitat Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74:155–63.CrossRef Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74:155–63.CrossRef
29.
Zurück zum Zitat Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Syst 2012;42:513–29.CrossRef Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Syst 2012;42:513–29.CrossRef
30.
Zurück zum Zitat Kasun LLC, Zhou H, Huang GB, Vong CM. Representational learning with extreme learning machine for big data. IEEE Intell Syst 2013;28:31–4.CrossRef Kasun LLC, Zhou H, Huang GB, Vong CM. Representational learning with extreme learning machine for big data. IEEE Intell Syst 2013;28:31–4.CrossRef
31.
Zurück zum Zitat Yan CG, Zane YF. DPARSF A Matlab toolbox for ‘pipeline’ data analysis of resting-state fMRI. Front in Sys Neurosci 2010;4:13. Yan CG, Zane YF. DPARSF A Matlab toolbox for ‘pipeline’ data analysis of resting-state fMRI. Front in Sys Neurosci 2010;4:13.
32.
Zurück zum Zitat Eickhoff SB, et al. A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005;25:1325–35.CrossRef Eickhoff SB, et al. A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005;25:1325–35.CrossRef
34.
Zurück zum Zitat Liu ZP. Linear discriminant analysis. Chicago 2013;3:27–3. Liu ZP. Linear discriminant analysis. Chicago 2013;3:27–3.
35.
Zurück zum Zitat He X, Niyogi P. Locality preserving projections. NIPS. 2004:153–160. He X, Niyogi P. Locality preserving projections. NIPS. 2004:153–160.
36.
Zurück zum Zitat Kong X, Yu PS. Brain network analysis:a data mining perspective. Acm Sigkdd Explor Newslett 2014;15: 30–8.CrossRef Kong X, Yu PS. Brain network analysis:a data mining perspective. Acm Sigkdd Explor Newslett 2014;15: 30–8.CrossRef
37.
Zurück zum Zitat Tzouriomazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273–89.CrossRef Tzouriomazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273–89.CrossRef
38.
Zurück zum Zitat Titova N, Qamar MA, Chaudhuri KR. The nonmotor features of Parkinson’s disease. Int Rev Neurobiol 2018;132:33–54.CrossRef Titova N, Qamar MA, Chaudhuri KR. The nonmotor features of Parkinson’s disease. Int Rev Neurobiol 2018;132:33–54.CrossRef
39.
Zurück zum Zitat Khazaee A, Ebrahimzadeh A, Babajaniferemi A. Classification of patients with MCI And AD from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res 2017;322:339–50.CrossRef Khazaee A, Ebrahimzadeh A, Babajaniferemi A. Classification of patients with MCI And AD from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res 2017;322:339–50.CrossRef
40.
Zurück zum Zitat Hinton G, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313: 504–07.MathSciNetCrossRef Hinton G, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313: 504–07.MathSciNetCrossRef
41.
Zurück zum Zitat Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extractingand composing robust features with denoising autoencoders. ICML. 2008:1096–03. Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extractingand composing robust features with denoising autoencoders. ICML. 2008:1096–03.
42.
43.
Zurück zum Zitat Salakhutdinov R, Hinton G. Deep boltzmann machines. AISTATS. 2009:448–55. Salakhutdinov R, Hinton G. Deep boltzmann machines. AISTATS. 2009:448–55.
Metadaten
Titel
Computer-Aided Dementia Diagnosis Based on Hierarchical Extreme Learning Machine
verfasst von
Zhongyang Wang
Junchang Xin
Zhiqiong Wang
Huizi Gu
Yue Zhao
Wei Qian
Publikationsdatum
20.02.2020
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2021
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09708-1

Weitere Artikel der Ausgabe 1/2021

Cognitive Computation 1/2021 Zur Ausgabe