Skip to main content
Erschienen in: Minds and Machines 1/2019

20.03.2019

Computer Modeling and Simulation: Increasing Reliability by Disentangling Verification and Validation

verfasst von: Vitaly Pronskikh

Erschienen in: Minds and Machines | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Verification and validation (V&V) of computer codes and models used in simulations are two aspects of the scientific practice of high importance that recently have been discussed widely by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to the model’s relation to the real world and its intended use. Because complex simulations are generally opaque to a practitioner, the Duhem problem can arise with verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or the model’s general inadequacy to its target should be blamed in the case of a failure. I argue that a clear distinction between computer modeling and simulation has to be made to disentangle verification and validation. Drawing on that distinction, I suggest to associate modeling with verification and simulation, which shares common epistemic strategies with experimentation, with validation. To explain the reasons for their entanglement in practice, I propose a Weberian ideal–typical model of modeling and simulation as roles in practice. I examine an approach to mitigate the Duhem problem for verification and validation that is generally applicable in practice and is based on differences in epistemic strategies and scopes. Based on this analysis, I suggest two strategies to increase the reliability of simulation results, namely, avoiding alterations of verified models at the validation stage as well as performing simulations of the same target system using two or more different models. In response to Winsberg’s claim that verification and validation are entangled I argue that deploying the methodology proposed in this work it is possible to mitigate inseparability of V&V in many if not all domains where modeling and simulation are used.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Similar to how the use of a TV set or a phone does not require knowledge of its internal organization.
 
2
In accelerator beam dynamics simulations, similar uncertainties often are associated with the so-called “symplecticity”.
 
Literatur
Zurück zum Zitat Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments. Synthese, 169, 557–574.MathSciNetCrossRef Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments. Synthese, 169, 557–574.MathSciNetCrossRef
Zurück zum Zitat Bruning, O., Cappi, R., Garoby, R., Grobner, O., Herr, W., Linnecar, T., Ostojic, R., Potter, K., Rossi, L., Ruggiero, F. (Eds.), Schindl, K., Stevenson, G., Tavian, L., Taylor, T., Tsesmelis, E., Weisse, E. & Zimmermann, F. (2002). LHC luminosity and energy upgrade: A feasibility study. CERN-LHC-Project-Report- 626, CERN. Bruning, O., Cappi, R., Garoby, R., Grobner, O., Herr, W., Linnecar, T., Ostojic, R., Potter, K., Rossi, L., Ruggiero, F. (Eds.), Schindl, K., Stevenson, G., Tavian, L., Taylor, T., Tsesmelis, E., Weisse, E. & Zimmermann, F. (2002). LHC luminosity and energy upgrade: A feasibility study. CERN-LHC-Project-Report- 626, CERN.
Zurück zum Zitat Chandrasekharan, S., Nersessian, N. J., & Subramanian, V. (2012). Computational modeling: Is this the end of thought experimenting in science? In J. Brown, M. Frappier, & L. Meynell (Eds.), Thought experiments in philosophy, science and the arts (pp. 239–260). London: Routledge. Chandrasekharan, S., Nersessian, N. J., & Subramanian, V. (2012). Computational modeling: Is this the end of thought experimenting in science? In J. Brown, M. Frappier, & L. Meynell (Eds.), Thought experiments in philosophy, science and the arts (pp. 239–260). London: Routledge.
Zurück zum Zitat De Roeck, A., Gianotti, F., Morsch, A., & Pokorski, W. (2004). Simulation physics requirements from the LHC experiments, CERN-LCGAPP-2004-02. De Roeck, A., Gianotti, F., Morsch, A., & Pokorski, W. (2004). Simulation physics requirements from the LHC experiments, CERN-LCGAPP-2004-02.
Zurück zum Zitat Deniau, L., Grote, H., Roy, G., & Schmidt, F. (2018). The MAD-X Program (Methodical Accelerator Design) Version 5.04.02 User’s reference manual. European Laboratory for Particle Physics. http://madx.web.cern.ch/madx/. Deniau, L., Grote, H., Roy, G., & Schmidt, F. (2018). The MAD-X Program (Methodical Accelerator Design) Version 5.04.02 User’s reference manual. European Laboratory for Particle Physics. http://​madx.​web.​cern.​ch/​madx/​.
Zurück zum Zitat Durán, J. M. (2018). Computer simulations as a technological singularity in the empirical sciences. In S. Armstrong, J. Miller, R. Yampolskiy, & V. Callaghan (Eds.), The technological singularity—A pragmatic perspective. Berlin: Springer. Durán, J. M. (2018). Computer simulations as a technological singularity in the empirical sciences. In S. Armstrong, J. Miller, R. Yampolskiy, & V. Callaghan (Eds.), The technological singularity—A pragmatic perspective. Berlin: Springer.
Zurück zum Zitat Franklin, A. (1994). How to avoid the experimenters’ regress. Studies in History and Philosophy of Science, 25(3), 463–491.CrossRef Franklin, A. (1994). How to avoid the experimenters’ regress. Studies in History and Philosophy of Science, 25(3), 463–491.CrossRef
Zurück zum Zitat Frigg, R., & Reiss, J. (2009). The philosophy of simulation: Hot new issues or same old stew? Synthese, 169, 593–613.MathSciNetCrossRef Frigg, R., & Reiss, J. (2009). The philosophy of simulation: Hot new issues or same old stew? Synthese, 169, 593–613.MathSciNetCrossRef
Zurück zum Zitat Galison, P. (2003) The collective author. In P. Galison, M. Biagioli (Eds.) Scientific authorship: Credit and intellectual property in science (pp. 325–353). New York and Oxford: Routledge. Galison, P. (2003) The collective author. In P. Galison, M. Biagioli (Eds.) Scientific authorship: Credit and intellectual property in science (pp. 325–353). New York and Oxford: Routledge.
Zurück zum Zitat Gorman, M. E. (2010). Trading zones and interactional expertise. In M. E. Gorman (Ed.), Creating new kinds of collaboration. Cambridge: MIT Press. Gorman, M. E. (2010). Trading zones and interactional expertise. In M. E. Gorman (Ed.), Creating new kinds of collaboration. Cambridge: MIT Press.
Zurück zum Zitat Hartmann, S. (1996). The world as a process. Simulations in the natural and social sciences. In R. Hegselmann, U. Mueller, & K. Troitzch (Eds.), Modelling and simulation in natural sciences from the philosophy of science point of view (pp. 77–100). Dordrecht: Kluwer Academic Publishing.CrossRef Hartmann, S. (1996). The world as a process. Simulations in the natural and social sciences. In R. Hegselmann, U. Mueller, & K. Troitzch (Eds.), Modelling and simulation in natural sciences from the philosophy of science point of view (pp. 77–100). Dordrecht: Kluwer Academic Publishing.CrossRef
Zurück zum Zitat Hasse, H., & Lenhard, J. (2017). Boon and bane: On the role of adjustable parameters in simulation models. In J. Lenhard & M. Carrier (Eds.), Mathematics as a tool. Boston studies in the philosophy and history of science (Vol. 327). Cham: Springer. Hasse, H., & Lenhard, J. (2017). Boon and bane: On the role of adjustable parameters in simulation models. In J. Lenhard & M. Carrier (Eds.), Mathematics as a tool. Boston studies in the philosophy and history of science (Vol. 327). Cham: Springer.
Zurück zum Zitat Humphreys, P. (1991). Computer simulations. In A. Fine, M. Forbes, & L. Wessels (Eds.), PSA (Vol. 2, pp. 497–506). East Lansing: Philosophy of Science Association. Humphreys, P. (1991). Computer simulations. In A. Fine, M. Forbes, & L. Wessels (Eds.), PSA (Vol. 2, pp. 497–506). East Lansing: Philosophy of Science Association.
Zurück zum Zitat Humphreys, P. (2004). Extending ourselves. Computational science, empiricism, and scientific method. Oxford: Oxford University Press.CrossRef Humphreys, P. (2004). Extending ourselves. Computational science, empiricism, and scientific method. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Jebeile, J. (2012). Verification
 and 
validation
of
computer
simulations: A
philosophical
analysis. In Proceedings of the international conference models and simulations MS5 (p. 54), Helsinki. Jebeile, J. (2012). Verification
 and 
validation
of
computer
simulations: A
philosophical
analysis. In Proceedings of the international conference models and simulations MS5 (p. 54), Helsinki.
Zurück zum Zitat Keller, E. F. (2003). Models, simulation and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (p. 200). Pittsburgh: The University of Pittsburgh Press. Keller, E. F. (2003). Models, simulation and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (p. 200). Pittsburgh: The University of Pittsburgh Press.
Zurück zum Zitat Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy of Science, 74(2), 176–194.MathSciNetCrossRef Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy of Science, 74(2), 176–194.MathSciNetCrossRef
Zurück zum Zitat Morrison, M. (2009). Models, measurement and computer simulation: the changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRef Morrison, M. (2009). Models, measurement and computer simulation: the changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRef
Zurück zum Zitat Morrison, M. (2015). Reconstructing reality: Models, mathematics, and simulations. New York: Oxford University Press.CrossRefMATH Morrison, M. (2015). Reconstructing reality: Models, mathematics, and simulations. New York: Oxford University Press.CrossRefMATH
Zurück zum Zitat Parke, E. C. (2014). Experiments, simulations, and epistemic privilege. Philosophy of Science, 81(4), 516–536.CrossRef Parke, E. C. (2014). Experiments, simulations, and epistemic privilege. Philosophy of Science, 81(4), 516–536.CrossRef
Zurück zum Zitat Parker, W. S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169, 483–496.CrossRef Parker, W. S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169, 483–496.CrossRef
Zurück zum Zitat Peck, S. L. (2004). Simulation as experiment: A philosophical reassessment for biological modeling. Trends in Ecology and Evolution, 19(10), 530–534.CrossRef Peck, S. L. (2004). Simulation as experiment: A philosophical reassessment for biological modeling. Trends in Ecology and Evolution, 19(10), 530–534.CrossRef
Zurück zum Zitat Pronskikh, V. (2018). Linguistic privilege and justice: What can we learn from STEM? Fermilab publication FERMILAB-PUB-18-013. Pronskikh, V. (2018). Linguistic privilege and justice: What can we learn from STEM? Fermilab publication FERMILAB-PUB-18-013.
Zurück zum Zitat Spentzouris, P., & Amundson, J. (2004). Synergia: A modern tool for accelerator physics simulation. Fermilab preprint FERMILAB-CONF-04-488-CD. In Proceedings of 14th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2004), 27 Sep–1 Oct 2004 (pp. 223–236). Interlaken, Switzerland. Spentzouris, P., & Amundson, J. (2004). Synergia: A modern tool for accelerator physics simulation. Fermilab preprint FERMILAB-CONF-04-488-CD. In Proceedings of 14th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2004), 27 Sep–1 Oct 2004 (pp. 223–236). Interlaken, Switzerland.
Zurück zum Zitat Suppes, P. (1960). A comparison of the meaning and use of models in the mathematical and the empirical sciences. Synthese, 12, 287–300.MathSciNetCrossRefMATH Suppes, P. (1960). A comparison of the meaning and use of models in the mathematical and the empirical sciences. Synthese, 12, 287–300.MathSciNetCrossRefMATH
Zurück zum Zitat Trujillo-Gomez, S., Klypin, A., Primack, J., & Romanowsky, A. J. (2011). Galaxies in ΛCDM with halo abundance matching: Luminosity–velocity relation, baryonic mass–velocity relation, velocity function and clustering. arXiv:1005.1289v3 [astro-ph.CO], September 23, 2011. Trujillo-Gomez, S., Klypin, A., Primack, J., & Romanowsky, A. J. (2011). Galaxies in ΛCDM with halo abundance matching: Luminosity–velocity relation, baryonic mass–velocity relation, velocity function and clustering. arXiv:​1005.​1289v3 [astro-ph.CO], September 23, 2011.
Zurück zum Zitat Weber, M. (1949). ‘Objectivity’ in social science and social policy. In The methodology of the social sciences (Eds. by E. A. Shils & H. A. Finch, Trans.) (pp. 49–112). New York: Free Press. Weber, M. (1949). ‘Objectivity’ in social science and social policy. In The methodology of the social sciences (Eds. by E. A. Shils & H. A. Finch, Trans.) (pp. 49–112). New York: Free Press.
Zurück zum Zitat Weisberg, M. (2013). Simulation and similarity. Using models to understand the world. Oxford: Oxford University Press.CrossRef Weisberg, M. (2013). Simulation and similarity. Using models to understand the world. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Winsberg, E. (2010). Science in the age of computer simulations. Chicago, London: The University of Chicago Press.CrossRef Winsberg, E. (2010). Science in the age of computer simulations. Chicago, London: The University of Chicago Press.CrossRef
Zurück zum Zitat Winsberg, E. (2018). Climate science and philosophy. Cambridge: Cambridge University Press.CrossRef Winsberg, E. (2018). Climate science and philosophy. Cambridge: Cambridge University Press.CrossRef
Metadaten
Titel
Computer Modeling and Simulation: Increasing Reliability by Disentangling Verification and Validation
verfasst von
Vitaly Pronskikh
Publikationsdatum
20.03.2019
Verlag
Springer Netherlands
Erschienen in
Minds and Machines / Ausgabe 1/2019
Print ISSN: 0924-6495
Elektronische ISSN: 1572-8641
DOI
https://doi.org/10.1007/s11023-019-09494-7

Weitere Artikel der Ausgabe 1/2019

Minds and Machines 1/2019 Zur Ausgabe