Skip to main content

2015 | OriginalPaper | Buchkapitel

11. Computing Manifolds

verfasst von : Christian Kuehn

Erschienen in: Multiple Time Scale Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have extensively discussed the properties of invariant manifolds and their relevance for fast–slow systems in previous chapters. However, we usually used explicit algebraic expressions or asymptotic expansions to deal with critical and slow manifolds. For a general multiple time scale system, there are several complications. They may not be in standard form, and even if they are, then calculating a slow manifold analytically may be intractable. This chapter deals with algorithms to find and compute invariant manifolds for fast–slow systems numerically.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[Abr13b]
Zurück zum Zitat R.V. Abramov. A simple stochastic parameterization for reduced models of multiscale dynamics. arXiv:1302.4132v1, pages 1–23, 2013. R.V. Abramov. A simple stochastic parameterization for reduced models of multiscale dynamics. arXiv:1302.4132v1, pages 1–23, 2013.
[ACC+07]
Zurück zum Zitat A. Adrover, F. Creta, S. Cerbelli, M. Valorani, and M. Giona. The structure of slow invariant manifolds and their bifurcational routes in chemical kinetic models. Comput. Chem. Eng., 31(11): 1456–1474, 2007.CrossRef A. Adrover, F. Creta, S. Cerbelli, M. Valorani, and M. Giona. The structure of slow invariant manifolds and their bifurcational routes in chemical kinetic models. Comput. Chem. Eng., 31(11): 1456–1474, 2007.CrossRef
[ACGV07]
Zurück zum Zitat A. Adrover, F. Creta, M. Giona, and M. Valorani. Stretching-based diagnostics and reduction of chemical kinetic models with diffusion. J. Comp. Phys., 225(2):1442–1471, 2007.CrossRefMATHMathSciNet A. Adrover, F. Creta, M. Giona, and M. Valorani. Stretching-based diagnostics and reduction of chemical kinetic models with diffusion. J. Comp. Phys., 225(2):1442–1471, 2007.CrossRefMATHMathSciNet
[ASST12]
Zurück zum Zitat G. Ariel, J.M. Sanz-Serna, and R. Tsai. A multiscale technique for finding slow manifolds of stiff mechanical systems. Multiscale Model. Simul., 10(4):1180–1203, 2012.CrossRefMATHMathSciNet G. Ariel, J.M. Sanz-Serna, and R. Tsai. A multiscale technique for finding slow manifolds of stiff mechanical systems. Multiscale Model. Simul., 10(4):1180–1203, 2012.CrossRefMATHMathSciNet
[BBS96]
Zurück zum Zitat J.A. Borghans, R.J. De Boer, and L.A. Segel. Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol., 58(1):43–63, 1996.CrossRefMATH J.A. Borghans, R.J. De Boer, and L.A. Segel. Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol., 58(1):43–63, 1996.CrossRefMATH
[BCGFS13]
Zurück zum Zitat T. Berry, J.R. Cressman, Z. Greguric-Ferencek, and T. Sauer. Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Syst., 12(2):618–649, 2013.CrossRefMATHMathSciNet T. Berry, J.R. Cressman, Z. Greguric-Ferencek, and T. Sauer. Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Syst., 12(2):618–649, 2013.CrossRefMATHMathSciNet
[BG13c]
Zurück zum Zitat V. Bykov and V. Gol’dshtein. Fast and slow invariant manifolds in chemical kinetics. Comput. Math. Appl., 65(10):1502–1515, 2013. V. Bykov and V. Gol’dshtein. Fast and slow invariant manifolds in chemical kinetics. Comput. Math. Appl., 65(10):1502–1515, 2013.
[BGG08]
Zurück zum Zitat S. Borok, I. Goldfarb, and V. Gol’dshtein. About non-coincidence of invariant manifolds and intrinsic low dimensional manifolds (ILDM). Comm. Nonl. Sci. Numer. Simul., 13(6):1029–1038, 2008. S. Borok, I. Goldfarb, and V. Gol’dshtein. About non-coincidence of invariant manifolds and intrinsic low dimensional manifolds (ILDM). Comm. Nonl. Sci. Numer. Simul., 13(6):1029–1038, 2008.
[BGGM06]
Zurück zum Zitat V. Bykov, I. Goldfarb, V. Gol’dshtein, and U. Maas. On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. IMA J. Appl. Math., 71(3):359–382, 2006. V. Bykov, I. Goldfarb, V. Gol’dshtein, and U. Maas. On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. IMA J. Appl. Math., 71(3):359–382, 2006.
[BGM08]
Zurück zum Zitat V. Bykov, V. Gol’dshtein, and U. Maas. Simple global reduction technique based on decomposition approach. Combust. Theor. Model., 12(2):389–405, 2008. V. Bykov, V. Gol’dshtein, and U. Maas. Simple global reduction technique based on decomposition approach. Combust. Theor. Model., 12(2):389–405, 2008.
[BH25]
Zurück zum Zitat G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem. J., 19(2):338–339, 1925. G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem. J., 19(2):338–339, 1925.
[BHV07]
Zurück zum Zitat H.W. Broer, A. Hagen, and G. Vegter. Numerical continuation of normally hyperbolic invariant manifolds. Nonlinearity, 20(6):1499–1534, 2007.CrossRefMATHMathSciNet H.W. Broer, A. Hagen, and G. Vegter. Numerical continuation of normally hyperbolic invariant manifolds. Nonlinearity, 20(6):1499–1534, 2007.CrossRefMATHMathSciNet
[BM07a]
Zurück zum Zitat V. Bykov and U. Maas. The extension of the ILDM concept to reaction–diffusion manifolds. Comust. Theor. Model., 11(6):839–862, 2007.CrossRefMATH V. Bykov and U. Maas. The extension of the ILDM concept to reaction–diffusion manifolds. Comust. Theor. Model., 11(6):839–862, 2007.CrossRefMATH
[BM07b]
Zurück zum Zitat V. Bykov and U. Maas. Extension of the ILDM method to the domain of slow chemistry. Proceed. Comust. Inst., 31(1):465–472, 2007.CrossRef V. Bykov and U. Maas. Extension of the ILDM method to the domain of slow chemistry. Proceed. Comust. Inst., 31(1):465–472, 2007.CrossRef
[BYS10]
Zurück zum Zitat E.M. Bollt, C. Yao, and I.B. Schwartz. Dimensional implications of dynamical data on manifolds to empirical KL analysis. Physica D, 239(23):2039–2049, 2010.CrossRefMATHMathSciNet E.M. Bollt, C. Yao, and I.B. Schwartz. Dimensional implications of dynamical data on manifolds to empirical KL analysis. Physica D, 239(23):2039–2049, 2010.CrossRefMATHMathSciNet
[Chi12]
Zurück zum Zitat E. Chiavazzo. Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized relaxation redistribution method. J. Comp. Phys., 231(4):1751–1765, 2012.CrossRefMATHMathSciNet E. Chiavazzo. Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized relaxation redistribution method. J. Comp. Phys., 231(4):1751–1765, 2012.CrossRefMATHMathSciNet
[CRK05]
Zurück zum Zitat R. Clewley, H.G. Rotstein, and N. Kopell. A computational tool for the reduction of nonlinear ODE systems possessing mutltiple scales. Multiscale Model. Simul., 4(3):732–759, 2005.CrossRefMATHMathSciNet R. Clewley, H.G. Rotstein, and N. Kopell. A computational tool for the reduction of nonlinear ODE systems possessing mutltiple scales. Multiscale Model. Simul., 4(3):732–759, 2005.CrossRefMATHMathSciNet
[CS11]
Zurück zum Zitat M.S. Calder and D. Siegel. Properties of the Lindemann mechanism in phase space. Electron. J. Differential Equat., 2011(8):1–31, 2011. M.S. Calder and D. Siegel. Properties of the Lindemann mechanism in phase space. Electron. J. Differential Equat., 2011(8):1–31, 2011.
[CS12]
Zurück zum Zitat M.J. Capinski and C. Simo. Computer assisted proof for normally hyperbolic invariant manifolds. Nonlinearity, 25:1997–2026, 2012.CrossRefMATHMathSciNet M.J. Capinski and C. Simo. Computer assisted proof for normally hyperbolic invariant manifolds. Nonlinearity, 25:1997–2026, 2012.CrossRefMATHMathSciNet
[CTS12]
Zurück zum Zitat R. Chachra, M.K. Transtrum, and J.P. Sethna. Structural susceptibility and separation of time scales in the van der Pol oscillator. Phys. Rev. E, 86:026712, 2012.CrossRef R. Chachra, M.K. Transtrum, and J.P. Sethna. Structural susceptibility and separation of time scales in the van der Pol oscillator. Phys. Rev. E, 86:026712, 2012.CrossRef
[DCD+07]
Zurück zum Zitat E.J. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang. Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont). http://cmvl.cs.concordia.ca/auto, 2007. E.J. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang. Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont). http://​cmvl.​cs.​concordia.​ca/​auto, 2007.
[DH96]
Zurück zum Zitat M. Dellnitz and A. Hohmann. The computation of unstable manifolds using subdivision and continuation. In H.W. Broer, S.A. Van Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Systems and Chaos PNLDE 19, pages 449–459. Birkhäuser, 1996. M. Dellnitz and A. Hohmann. The computation of unstable manifolds using subdivision and continuation. In H.W. Broer, S.A. Van Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Systems and Chaos PNLDE 19, pages 449–459. Birkhäuser, 1996.
[DH97]
Zurück zum Zitat M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math., 75:293–317, 1997.CrossRefMATHMathSciNet M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math., 75:293–317, 1997.CrossRefMATHMathSciNet
[DGK+12]
Zurück zum Zitat M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, and M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.CrossRefMATHMathSciNet M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, and M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.CrossRefMATHMathSciNet
[DKO08a]
Zurück zum Zitat M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst., 7(4):1131–1162, 2008.CrossRefMATHMathSciNet M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst., 7(4):1131–1162, 2008.CrossRefMATHMathSciNet
[DKO10]
Zurück zum Zitat M. Desroches, B. Krauskopf, and H.M. Osinga. Numerical continuation of canard orbits in slow–fast dynamical systems. Nonlinearity, 23(3):739–765, 2010.CrossRefMATHMathSciNet M. Desroches, B. Krauskopf, and H.M. Osinga. Numerical continuation of canard orbits in slow–fast dynamical systems. Nonlinearity, 23(3):739–765, 2010.CrossRefMATHMathSciNet
[DR96a]
Zurück zum Zitat P. Duchene and P. Rouchon. Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Engineer. Sci., 51(20):4661–4672, 1996.CrossRef P. Duchene and P. Rouchon. Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Engineer. Sci., 51(20):4661–4672, 1996.CrossRef
[DS99b]
Zurück zum Zitat M.J. Davis and R.T. Skodje. Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys., 111:859–874, 1999.CrossRef M.J. Davis and R.T. Skodje. Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys., 111:859–874, 1999.CrossRef
[EKO07]
Zurück zum Zitat J.P. England, B. Krauskopf, and H.M. Osinga. Computing two-dimensional global invariant manifolds in slow–fast systems. Int. J. Bif. Chaos, 17(3):805–822, 2007.CrossRefMATHMathSciNet J.P. England, B. Krauskopf, and H.M. Osinga. Computing two-dimensional global invariant manifolds in slow–fast systems. Int. J. Bif. Chaos, 17(3):805–822, 2007.CrossRefMATHMathSciNet
[Fen79]
Zurück zum Zitat N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equat., 31:53–98, 1979.CrossRefMATHMathSciNet N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equat., 31:53–98, 1979.CrossRefMATHMathSciNet
[FH06]
Zurück zum Zitat D. Flockerzi and W. Heineken. Comment on: Chaos 9, 108–123 (1999). Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos, 16(4):048101, 2006. D. Flockerzi and W. Heineken. Comment on: Chaos 9, 108–123 (1999). Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos, 16(4):048101, 2006.
[Fra88b]
Zurück zum Zitat S.J. Fraser. The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys., 88:4732–4738, 1988.CrossRef S.J. Fraser. The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys., 88:4732–4738, 1988.CrossRef
[GDH04]
Zurück zum Zitat Z.P. Gerdtzen, P. Daoutidis, and W.S. Hu. Non-linear reduction for kinetic models of metabolic reaction networks. Metabolic Engineering, 6(2):140–154, 2004.CrossRef Z.P. Gerdtzen, P. Daoutidis, and W.S. Hu. Non-linear reduction for kinetic models of metabolic reaction networks. Metabolic Engineering, 6(2):140–154, 2004.CrossRef
[GGM04]
Zurück zum Zitat I. Goldfarb, V. Gol’dshtein, and U. Maas. Comparative analysis of two asymptotic approaches based on integral manifolds. IMA J. Appl. Math., 69(4):353–374, 2004. I. Goldfarb, V. Gol’dshtein, and U. Maas. Comparative analysis of two asymptotic approaches based on integral manifolds. IMA J. Appl. Math., 69(4):353–374, 2004.
[GH83]
Zurück zum Zitat J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.CrossRefMATH J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.CrossRefMATH
[GJM12]
Zurück zum Zitat J. Guckenheimer, T. Johnson, and P. Meerkamp. Rigorous enclosures of a slow manifold. SIAM J. Appl. Dyn. Syst., 11(3):831–863, 2012.CrossRefMATHMathSciNet J. Guckenheimer, T. Johnson, and P. Meerkamp. Rigorous enclosures of a slow manifold. SIAM J. Appl. Dyn. Syst., 11(3):831–863, 2012.CrossRefMATHMathSciNet
[GK09a]
[GK10b]
Zurück zum Zitat J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.CrossRefMATHMathSciNet J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.CrossRefMATHMathSciNet
[GKKZ05]
Zurück zum Zitat C.W. Gear, T.J. Kaper, I.G. Kevrikidis, and A. Zagaris. Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst., 4(3):711–732, 2005.CrossRefMATHMathSciNet C.W. Gear, T.J. Kaper, I.G. Kevrikidis, and A. Zagaris. Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst., 4(3):711–732, 2005.CrossRefMATHMathSciNet
[GKS04]
Zurück zum Zitat D. Givon, R. Kupferman, and A.M. Stuart. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity, 17:55–127, 2004.CrossRefMathSciNet D. Givon, R. Kupferman, and A.M. Stuart. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity, 17:55–127, 2004.CrossRefMathSciNet
[GKZ04]
Zurück zum Zitat A.N. Gorban, I.V. Karlin, and A.Yu. Zinovyev. Constructive methods of invariant manifolds for kinetic problems. Physics Reports, 396:197–403, 2004.CrossRefMathSciNet A.N. Gorban, I.V. Karlin, and A.Yu. Zinovyev. Constructive methods of invariant manifolds for kinetic problems. Physics Reports, 396:197–403, 2004.CrossRefMathSciNet
[GV04]
Zurück zum Zitat J. Guckenheimer and A. Vladimirsky. A fast method for approximating invariant manifolds. SIAM J. Appl. Dyn. Syst., 3(3):232–260, 2004.CrossRefMATHMathSciNet J. Guckenheimer and A. Vladimirsky. A fast method for approximating invariant manifolds. SIAM J. Appl. Dyn. Syst., 3(3):232–260, 2004.CrossRefMATHMathSciNet
[GV06]
Zurück zum Zitat D.A. Goussis and M. Valorani. An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J. Comp. Phys., 214:316–346, 2006.CrossRefMATHMathSciNet D.A. Goussis and M. Valorani. An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J. Comp. Phys., 214:316–346, 2006.CrossRefMATHMathSciNet
[GvL96]
Zurück zum Zitat G.H. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 1996.MATH G.H. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 1996.MATH
[GW93]
Zurück zum Zitat J. Guckenheimer and P. Worfolk. Dynamical systems: some computational problems. In D. Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector Fields, pages 241–277. Kluwer, 1993. J. Guckenheimer and P. Worfolk. Dynamical systems: some computational problems. In D. Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector Fields, pages 241–277. Kluwer, 1993.
[Hal03]
Zurück zum Zitat B.C. Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2003. B.C. Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2003.
[Hen03]
Zurück zum Zitat M.E. Henderson. Computing invariant manifolds by integrating fat trajectories. Technical Report RC22944, IBM Research, 2003. M.E. Henderson. Computing invariant manifolds by integrating fat trajectories. Technical Report RC22944, IBM Research, 2003.
[HMKS01]
Zurück zum Zitat S. Handrock-Meyer, L.V. Kalachev, and K.R. Schneider. A method to determine the dimension of long-time dynamics in multi-scale systems. J. Math. Chem., 30(2):133–160, 2001.CrossRefMATHMathSciNet S. Handrock-Meyer, L.V. Kalachev, and K.R. Schneider. A method to determine the dimension of long-time dynamics in multi-scale systems. J. Math. Chem., 30(2):133–160, 2001.CrossRefMATHMathSciNet
[HR02]
Zurück zum Zitat E.L. Haseltine and Rawlings. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys., 117(15):6959–6969, 2002. E.L. Haseltine and Rawlings. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys., 117(15):6959–6969, 2002.
[HZKW09]
Zurück zum Zitat H.M. Hädin, A. Zagaris, K. Krab, and H.V. Westerhoff. Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations. FEBS J., 276(19):5491–5506, 2009.CrossRef H.M. Hädin, A. Zagaris, K. Krab, and H.V. Westerhoff. Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations. FEBS J., 276(19):5491–5506, 2009.CrossRef
[Jan89]
Zurück zum Zitat J.A.M. Janssen. The elimination of fast variables in complex chemical reactions. I. Macroscopic level. J. Stat. Phys., 57(1):157–169, 1989. J.A.M. Janssen. The elimination of fast variables in complex chemical reactions. I. Macroscopic level. J. Stat. Phys., 57(1):157–169, 1989.
[JJK97]
Zurück zum Zitat M.E. Johnson, M.S. Jolly, and I.G. Kevrekidis. Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies. Num. Alg., 14(1):125–140, 1997.CrossRefMATHMathSciNet M.E. Johnson, M.S. Jolly, and I.G. Kevrekidis. Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies. Num. Alg., 14(1):125–140, 1997.CrossRefMATHMathSciNet
[KAWC80]
Zurück zum Zitat P.V. Kokotovic, J.J. Allemong, J.R. Winkleman, and J.H. Chow. Singular perturbation and iterative separation of time scales. Automatica, 16:23–33, 1980.CrossRefMATH P.V. Kokotovic, J.J. Allemong, J.R. Winkleman, and J.H. Chow. Singular perturbation and iterative separation of time scales. Automatica, 16:23–33, 1980.CrossRefMATH
[Kaz00a]
Zurück zum Zitat N. Kazantzis. Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems. Phys. Lett. A, 272(4):257–263, 2000.CrossRefMATHMathSciNet N. Kazantzis. Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems. Phys. Lett. A, 272(4):257–263, 2000.CrossRefMATHMathSciNet
[KBS12]
Zurück zum Zitat K.U. Kristiansen, M. Brøns, and J. Starke. An iterative method for the approximation of fibers in slow–fast systems. arXiv:1208.6420, pages 1–28, 2012. K.U. Kristiansen, M. Brøns, and J. Starke. An iterative method for the approximation of fibers in slow–fast systems. arXiv:1208.6420, pages 1–28, 2012.
[KG02]
Zurück zum Zitat N. Kazantzis and T. Good. Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs. Comput. Chem. Engineer., 26(7):999–1012, 2002.CrossRef N. Kazantzis and T. Good. Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs. Comput. Chem. Engineer., 26(7):999–1012, 2002.CrossRef
[KJ11]
Zurück zum Zitat A. Kumar and K. Josić. Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol., pages 87–106, 2011. A. Kumar and K. Josić. Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol., pages 87–106, 2011.
[KK02]
Zurück zum Zitat H.G. Kaper and T.J. Kaper. Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D, 165:66–93, 2002.CrossRefMATHMathSciNet H.G. Kaper and T.J. Kaper. Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D, 165:66–93, 2002.CrossRefMATHMathSciNet
[KK13]
Zurück zum Zitat H.-W. Kang and T.G. Kurtz. Separation of time scales and model reduction for stochastic reaction networks. Ann. Appl. Prob., 23(2):529–583, 2013.CrossRefMATHMathSciNet H.-W. Kang and T.G. Kurtz. Separation of time scales and model reduction for stochastic reaction networks. Ann. Appl. Prob., 23(2):529–583, 2013.CrossRefMATHMathSciNet
[KKK+07]
Zurück zum Zitat L.V. Kalachev, H.G. Kaper, T.J. Kaper, N. Popovic, and A. Zagaris. Reduction for Michaelis–Menten–Henri kinetics in the presence of diffusion. Electronic J. Diff. Eq., 16:155–184, 2007.MathSciNet L.V. Kalachev, H.G. Kaper, T.J. Kaper, N. Popovic, and A. Zagaris. Reduction for Michaelis–Menten–Henri kinetics in the presence of diffusion. Electronic J. Diff. Eq., 16:155–184, 2007.MathSciNet
[KKS10]
Zurück zum Zitat N. Kazantzis, C. Kravaris, and L. Syrou. A new model reduction method for nonlinear dynamical systems. Nonlinear Dyn., 59(1):183–194, 2010.CrossRefMATHMathSciNet N. Kazantzis, C. Kravaris, and L. Syrou. A new model reduction method for nonlinear dynamical systems. Nonlinear Dyn., 59(1):183–194, 2010.CrossRefMATHMathSciNet
[Kna04]
Zurück zum Zitat A.W. Knapp. Lie Groups Beyond an Introduction. Birkhäuser, 2004. A.W. Knapp. Lie Groups Beyond an Introduction. Birkhäuser, 2004.
[KO99]
[KO03]
Zurück zum Zitat B. Krauskopf and H.M. Osinga. Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst., 4(2):546–569, 2003.CrossRefMathSciNet B. Krauskopf and H.M. Osinga. Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst., 4(2):546–569, 2003.CrossRefMathSciNet
[KOD+05]
Zurück zum Zitat B. Krauskopf, H.M. Osinga, E.J. Doedel, M.E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bif. Chaos, 15(3):763–791, 2005.CrossRefMATHMathSciNet B. Krauskopf, H.M. Osinga, E.J. Doedel, M.E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bif. Chaos, 15(3):763–791, 2005.CrossRefMATHMathSciNet
[KSG+98]
Zurück zum Zitat B.N. Kholdenko, S. Schuster, J. Garcia, H.V. Westerhoff, and M. Cascante. Control analysis of metabolic systems involving quasi-equilibrium reactions. Biochimica et Biophysica Acta, 1379(3): 337–352, 1998.CrossRef B.N. Kholdenko, S. Schuster, J. Garcia, H.V. Westerhoff, and M. Cascante. Control analysis of metabolic systems involving quasi-equilibrium reactions. Biochimica et Biophysica Acta, 1379(3): 337–352, 1998.CrossRef
[KSG10]
Zurück zum Zitat P.D. Kourdis, R. Steuer, and D.A. Goussis. Physical understanding of complex multiscale biochemical models via algorithmic simplification: glycolysis in Saccharomyces cerevisiae. Physica D, 239(18):1798–1817, 2010. P.D. Kourdis, R. Steuer, and D.A. Goussis. Physical understanding of complex multiscale biochemical models via algorithmic simplification: glycolysis in Saccharomyces cerevisiae. Physica D, 239(18):1798–1817, 2010.
[Leb04]
Zurück zum Zitat D. Lebiedz. Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys., 120:6890–6897, 2004.CrossRef D. Lebiedz. Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys., 120:6890–6897, 2004.CrossRef
[Lee06]
Zurück zum Zitat J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006. J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.
[LL09b]
Zurück zum Zitat C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks. J. Math. Chem., 46(4):1292–1321, 2009.CrossRefMATHMathSciNet C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks. J. Math. Chem., 46(4):1292–1321, 2009.CrossRefMATHMathSciNet
[LL10]
Zurück zum Zitat C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks with non-unique equilibrium probability. J. Math. Chem., 47(2):750–770, 2010.CrossRefMATHMathSciNet C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks with non-unique equilibrium probability. J. Math. Chem., 47(2):750–770, 2010.CrossRefMATHMathSciNet
[LO10]
Zurück zum Zitat C.H. Lee and H.G. Othmer. A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol., 60:387–450, 2010. C.H. Lee and H.G. Othmer. A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol., 60:387–450, 2010.
[LS13]
Zurück zum Zitat D. Lebiedz and J. Siehr. A continuation method for the efficient solution of parametric optimization problems in kinetic model reduction. arXiv:1301.5815, pages 1–19, 2013. D. Lebiedz and J. Siehr. A continuation method for the efficient solution of parametric optimization problems in kinetic model reduction. arXiv:1301.5815, pages 1–19, 2013.
[LSU11]
Zurück zum Zitat D. Lebiedz, J. Siehr, and J. Unger. A variational principle for computing slow invariant manifolds in dissipative dynamical systems. SIAM J. Sci. Comput., 33(2):703–720, 2011.CrossRefMATHMathSciNet D. Lebiedz, J. Siehr, and J. Unger. A variational principle for computing slow invariant manifolds in dissipative dynamical systems. SIAM J. Sci. Comput., 33(2):703–720, 2011.CrossRefMATHMathSciNet
[Maa98]
Zurück zum Zitat U. Maas. Efficient calculation of intrinsic low-dimensional manifolds for simplification of chemical kinetics. Comp. Vis. Sci., 1:69–82, 1998.CrossRefMATH U. Maas. Efficient calculation of intrinsic low-dimensional manifolds for simplification of chemical kinetics. Comp. Vis. Sci., 1:69–82, 1998.CrossRefMATH
[Mas02]
Zurück zum Zitat M. Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Comptes Rendus Math., 335:93–98, 2002.CrossRefMATHMathSciNet M. Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Comptes Rendus Math., 335:93–98, 2002.CrossRefMATHMathSciNet
[Mea95]
Zurück zum Zitat K.D. Mease. Geometry of computational singular perturbations. Nonlinear Contr. Syst. Design, 2: 855–861, 1995. K.D. Mease. Geometry of computational singular perturbations. Nonlinear Contr. Syst. Design, 2: 855–861, 1995.
[Mei78]
Zurück zum Zitat W. Meiske. An approximate solution of the Michaelis–Menten mechanism for quasi-steady and state quasi-equilibrium. Math. Biosci., 42:63–71, 1978.CrossRefMATHMathSciNet W. Meiske. An approximate solution of the Michaelis–Menten mechanism for quasi-steady and state quasi-equilibrium. Math. Biosci., 42:63–71, 1978.CrossRefMATHMathSciNet
[MP92a]
Zurück zum Zitat U. Maas and S.B. Pope. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. In Proceedings of the 24th International Symposium on Combustion, pages 103–112. The Combustion Institute, 1992. U. Maas and S.B. Pope. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. In Proceedings of the 24th International Symposium on Combustion, pages 103–112. The Combustion Institute, 1992.
[MP92b]
Zurück zum Zitat U. Maas and S.B. Pope. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame, 88:239–264, 1992.CrossRef U. Maas and S.B. Pope. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame, 88:239–264, 1992.CrossRef
[MP13]
Zurück zum Zitat J.D. Mengers and J.M. Powers. One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst., 12(2):560–595, 2013.CrossRefMATHMathSciNet J.D. Mengers and J.M. Powers. One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst., 12(2):560–595, 2013.CrossRefMATHMathSciNet
[NF89]
Zurück zum Zitat A.H. Nguyen and S.J. Fraser. Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys., 91:186, 1989.CrossRef A.H. Nguyen and S.J. Fraser. Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys., 91:186, 1989.CrossRef
[NF13]
Zurück zum Zitat P. Nicolini and D. Frezzato. Features in chemical kinetics. II. A self-emerging definition of slow manifolds. J. Chem. Phys., 138:234102, 2013. P. Nicolini and D. Frezzato. Features in chemical kinetics. II. A self-emerging definition of slow manifolds. J. Chem. Phys., 138:234102, 2013.
[NLCK06]
Zurück zum Zitat B. Nadler, S. Lafon, R.R. Coifman, and I.G. Kevrekidis. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmonic Anal., 21(1):113–127, 2006.CrossRefMATHMathSciNet B. Nadler, S. Lafon, R.R. Coifman, and I.G. Kevrekidis. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmonic Anal., 21(1):113–127, 2006.CrossRefMATHMathSciNet
[RA03]
Zurück zum Zitat C.V. Rao and A.P. Arkin. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys., 118(11):4999–5010, 2003.CrossRef C.V. Rao and A.P. Arkin. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys., 118(11):4999–5010, 2003.CrossRef
[RF91a]
Zurück zum Zitat M.R. Roussel and S.J. Fraser. Accurate steady-state approximations: implications for kinetics experiments and mechanism. J. Phys. Chem., 95(22):8762–8770, 1991.CrossRef M.R. Roussel and S.J. Fraser. Accurate steady-state approximations: implications for kinetics experiments and mechanism. J. Phys. Chem., 95(22):8762–8770, 1991.CrossRef
[RF91b]
Zurück zum Zitat M.R. Roussel and S.J. Fraser. Geometry of steady-state approximation: perturbation and accelerated convergence methods. J. Chem. Phys., 95:8762–8770, 1991.CrossRef M.R. Roussel and S.J. Fraser. Geometry of steady-state approximation: perturbation and accelerated convergence methods. J. Chem. Phys., 95:8762–8770, 1991.CrossRef
[RF91c]
Zurück zum Zitat M.R. Roussel and S.J. Fraser. On the geometry of transient relaxation. J. Chem. Phys., 94:7106, 1991.CrossRef M.R. Roussel and S.J. Fraser. On the geometry of transient relaxation. J. Chem. Phys., 94:7106, 1991.CrossRef
[RF01]
Zurück zum Zitat M.R. Roussel and S.J. Fraser. Invariant manifold methods for metabolic model reduction. Chaos, 11(1):196–206, 2001.CrossRefMATH M.R. Roussel and S.J. Fraser. Invariant manifold methods for metabolic model reduction. Chaos, 11(1):196–206, 2001.CrossRefMATH
[RGZL08]
Zurück zum Zitat O. Radulescu, A.N. Gorban, A. Zinovyev, and A. Lilienbaum. Robust simplifications of multiscale biochemical networks. BMC Syst. Biol., 2(1):86, 2008. O. Radulescu, A.N. Gorban, A. Zinovyev, and A. Lilienbaum. Robust simplifications of multiscale biochemical networks. BMC Syst. Biol., 2(1):86, 2008.
[RMW99]
Zurück zum Zitat C. Rhodes, M. Morari, and S. Wiggins. Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos, 9(1):108–123, 1999.CrossRefMATHMathSciNet C. Rhodes, M. Morari, and S. Wiggins. Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos, 9(1):108–123, 1999.CrossRefMATHMathSciNet
[RPVG07]
Zurück zum Zitat Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer. Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proceed. Combust. Inst., 31: 473–481, 2007.CrossRef Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer. Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proceed. Combust. Inst., 31: 473–481, 2007.CrossRef
[RSS11]
Zurück zum Zitat E. Reznik, D. Segré, and W.E. Sherwood. The quasi-steady state assumption in an enzymatically open system. arXiv:1103.1200v1, pages 1–28, 2011. E. Reznik, D. Segré, and W.E. Sherwood. The quasi-steady state assumption in an enzymatically open system. arXiv:1103.1200v1, pages 1–28, 2011.
[SFMH05]
Zurück zum Zitat R. Straube, D. Flockerzi, S.C. Müller, and M.J. Hauser. Reduction of chemical reaction networks using quasi-integrals. J. Phys. Chem. A, 109(3):441–450, 2005.CrossRef R. Straube, D. Flockerzi, S.C. Müller, and M.J. Hauser. Reduction of chemical reaction networks using quasi-integrals. J. Phys. Chem. A, 109(3):441–450, 2005.CrossRef
[SK93a]
Zurück zum Zitat G.M. Shroff and H.B. Keller. Stabilization of unstable procedures: a recursive projection method. SIAM J. Numer. Anal., 30:1099–1120, 1993.CrossRefMATHMathSciNet G.M. Shroff and H.B. Keller. Stabilization of unstable procedures: a recursive projection method. SIAM J. Numer. Anal., 30:1099–1120, 1993.CrossRefMATHMathSciNet
[SS89]
Zurück zum Zitat L.A. Segel and M. Slemrod. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev., 31(3):446–477, 1989.CrossRefMATHMathSciNet L.A. Segel and M. Slemrod. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev., 31(3):446–477, 1989.CrossRefMATHMathSciNet
[Ste73]
Zurück zum Zitat G.W. Stewart. Introduction to Matrix Computations. Academic Press, 1973. G.W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.
[Sti98a]
[VCG+06]
Zurück zum Zitat M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, and H.N. Najm. An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combustion and Flame, 146(1):29–51, 2006.CrossRef M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, and H.N. Najm. An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combustion and Flame, 146(1):29–51, 2006.CrossRef
[VGCN05]
Zurück zum Zitat M. Valorani, D.A. Goussis, F. Creta, and H.N. Najm. Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method. J. Comp. Phys., 209(2):754–786, 2005.CrossRefMATHMathSciNet M. Valorani, D.A. Goussis, F. Creta, and H.N. Najm. Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method. J. Comp. Phys., 209(2):754–786, 2005.CrossRefMATHMathSciNet
[VP09]
Zurück zum Zitat M. Valorani and S. Paolucci. The G-scheme: a framework for multi-scale adaptive model reduction. J. Comp. Phys., 228(13):4665–4701, 2009.CrossRefMATHMathSciNet M. Valorani and S. Paolucci. The G-scheme: a framework for multi-scale adaptive model reduction. J. Comp. Phys., 228(13):4665–4701, 2009.CrossRefMATHMathSciNet
[ZGKK09]
Zurück zum Zitat A. Zagaris, C.W. Gear, T.J. Kaper, and I.G. Kevrikidis. Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM: Math. Model. Numer. Anal., 43(4):754–784, 2009.CrossRef A. Zagaris, C.W. Gear, T.J. Kaper, and I.G. Kevrikidis. Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM: Math. Model. Numer. Anal., 43(4):754–784, 2009.CrossRef
[ZKK04a]
Zurück zum Zitat A. Zagaris, H.G. Kaper, and T.J. Kaper. Analysis of the computational singular perturbation method for chemical kinetics. J. Nonlinear Sci., 14:59–91, 2004.CrossRefMATHMathSciNet A. Zagaris, H.G. Kaper, and T.J. Kaper. Analysis of the computational singular perturbation method for chemical kinetics. J. Nonlinear Sci., 14:59–91, 2004.CrossRefMATHMathSciNet
[ZKK04b]
Zurück zum Zitat A. Zagaris, H.G. Kaper, and T.J. Kaper. Fast and slow dynamics for the computational singular perturbation method. Multiscale Model. Simul., 2(4):613–638, 2004.CrossRefMATHMathSciNet A. Zagaris, H.G. Kaper, and T.J. Kaper. Fast and slow dynamics for the computational singular perturbation method. Multiscale Model. Simul., 2(4):613–638, 2004.CrossRefMATHMathSciNet
[ZKK05]
Zurück zum Zitat A. Zagaris, H.G. Kaper, and T.J. Kaper. Two perspectives on reduction of ordinary differential equations. Math. Nachr., 278(12):1629–1642, 2005.CrossRefMATHMathSciNet A. Zagaris, H.G. Kaper, and T.J. Kaper. Two perspectives on reduction of ordinary differential equations. Math. Nachr., 278(12):1629–1642, 2005.CrossRefMATHMathSciNet
[ZNK13]
Zurück zum Zitat A. Zakharova, Z. Nikoloski, and A. Koseka. Dimensionality reduction of bistable biological systems. Bull. Math. Biol., 75:373–392, 2013.CrossRefMATHMathSciNet A. Zakharova, Z. Nikoloski, and A. Koseka. Dimensionality reduction of bistable biological systems. Bull. Math. Biol., 75:373–392, 2013.CrossRefMATHMathSciNet
[ZVG+12]
Zurück zum Zitat A. Zagaris, C. Vanderkerckhove, C.W. Gear, T.J. Kaper, and I.G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discr. Cont. Dyn. Syst. A, 32(8):2759–2803, 2012.CrossRefMATH A. Zagaris, C. Vanderkerckhove, C.W. Gear, T.J. Kaper, and I.G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discr. Cont. Dyn. Syst. A, 32(8):2759–2803, 2012.CrossRefMATH
Metadaten
Titel
Computing Manifolds
verfasst von
Christian Kuehn
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12316-5_11