Skip to main content
Erschienen in:

04.08.2017

Computing the Homology of Real Projective Sets

verfasst von: Felipe Cucker, Teresa Krick, Michael Shub

Erschienen in: Foundations of Computational Mathematics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe and analyze a numerical algorithm for computing the homology (Betti numbers and torsion coefficients) of real projective varieties. Here numerical means that the algorithm is numerically stable (in a sense to be made precise). Its cost depends on the condition of the input as well as on its size and is singly exponential in the number of variables (the dimension of the ambient space) and polynomial in the condition and the degrees of the defining polynomials. In addition, we show that outside of an exceptional set of measure exponentially small in the size of the data, the algorithm takes exponential time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.L. Allgower and K. Georg. Numerical Continuation Methods. Springer-Verlag, 1990. E.L. Allgower and K. Georg. Numerical Continuation Methods. Springer-Verlag, 1990.
2.
Zurück zum Zitat D. Amelunxen and M. Lotz. Average-case complexity without the black swans. To appear at J. Compl. Available at arXiv:1512.09290, 2016. D. Amelunxen and M. Lotz. Average-case complexity without the black swans. To appear at J. Compl. Available at arXiv:​1512.​09290, 2016.
3.
Zurück zum Zitat S. Basu. Computing the top Betti numbers of semialgebraic sets defined by quadratic inequalities in polynomial time. Found. Comput. Math., 8(1):45–80, 2008.MathSciNetCrossRefMATH S. Basu. Computing the top Betti numbers of semialgebraic sets defined by quadratic inequalities in polynomial time. Found. Comput. Math., 8(1):45–80, 2008.MathSciNetCrossRefMATH
4.
Zurück zum Zitat S. Basu, R. Pollack, and M.-F. Roy. Computing the first Betti number of a semi-algebraic set. Found. Comput. Math., 8(1):97–136, 2008.MathSciNetCrossRefMATH S. Basu, R. Pollack, and M.-F. Roy. Computing the first Betti number of a semi-algebraic set. Found. Comput. Math., 8(1):97–136, 2008.MathSciNetCrossRefMATH
5.
Zurück zum Zitat A. Björner. Topological methods. In R. Graham, M. Grotschel, and L. Lovasz, editors, Handbook of Combinatorics, pages 1819–1872. North-Holland, Amsterdam, 1995. A. Björner. Topological methods. In R. Graham, M. Grotschel, and L. Lovasz, editors, Handbook of Combinatorics, pages 1819–1872. North-Holland, Amsterdam, 1995.
6.
Zurück zum Zitat L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.
7.
Zurück zum Zitat L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Soc., 21:1–46, 1989.MathSciNetCrossRefMATH L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Soc., 21:1–46, 1989.MathSciNetCrossRefMATH
8.
Zurück zum Zitat P. Bürgisser and F. Cucker. Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets. J. Compl., 22:147–191, 2006.MathSciNetCrossRefMATH P. Bürgisser and F. Cucker. Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets. J. Compl., 22:147–191, 2006.MathSciNetCrossRefMATH
9.
Zurück zum Zitat P. Bürgisser and F. Cucker. Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math., 9:135–170, 2009.MathSciNetCrossRefMATH P. Bürgisser and F. Cucker. Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math., 9:135–170, 2009.MathSciNetCrossRefMATH
10.
Zurück zum Zitat P. Bürgisser and F. Cucker. Condition, volume 349 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2013.MATH P. Bürgisser and F. Cucker. Condition, volume 349 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2013.MATH
11.
Zurück zum Zitat D. Cheung and F. Cucker. Solving linear programs with finite precision: II. Algorithms. J. Compl., 22:305–335, 2006.MathSciNetMATH D. Cheung and F. Cucker. Solving linear programs with finite precision: II. Algorithms. J. Compl., 22:305–335, 2006.MathSciNetMATH
12.
Zurück zum Zitat G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic deccomposition, volume 33 of Lect. Notes in Comp. Sci., pages 134–183. Springer-Verlag, 1975. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic deccomposition, volume 33 of Lect. Notes in Comp. Sci., pages 134–183. Springer-Verlag, 1975.
14.
Zurück zum Zitat F. Cucker, H. Diao, and Y. Wei. Smoothed analysis of some condition numbers. Numer. Lin. Alg. Appl., 13:71–84, 2006.MathSciNetCrossRefMATH F. Cucker, H. Diao, and Y. Wei. Smoothed analysis of some condition numbers. Numer. Lin. Alg. Appl., 13:71–84, 2006.MathSciNetCrossRefMATH
15.
Zurück zum Zitat F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. I: Complexity and accuracy. J. Compl., 24:582–605, 2008.MathSciNetCrossRefMATH F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. I: Complexity and accuracy. J. Compl., 24:582–605, 2008.MathSciNetCrossRefMATH
16.
Zurück zum Zitat F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis. J. Fixed Point Theory Appl., 6:285–294, 2009.MathSciNetCrossRefMATH F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis. J. Fixed Point Theory Appl., 6:285–294, 2009.MathSciNetCrossRefMATH
17.
Zurück zum Zitat F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. III: Randomization and condition. Adv. Applied Math., 48:215–248, 2012.MathSciNetCrossRefMATH F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero counting. III: Randomization and condition. Adv. Applied Math., 48:215–248, 2012.MathSciNetCrossRefMATH
18.
Zurück zum Zitat F. Cucker and J. Peña. A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine. SIAM J. Optim., 12:522–554, 2002.MathSciNetCrossRefMATH F. Cucker and J. Peña. A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine. SIAM J. Optim., 12:522–554, 2002.MathSciNetCrossRefMATH
19.
Zurück zum Zitat F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46:113–184, 1999.MathSciNetCrossRefMATH F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46:113–184, 1999.MathSciNetCrossRefMATH
20.
Zurück zum Zitat Carlos D’Andrea, Teresa Krick, and Martín Sombra. Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze. Ann. Sci. Éc. Norm. Supér. (4), 46(4):549–627 (2013), 2013. Carlos D’Andrea, Teresa Krick, and Martín Sombra. Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze. Ann. Sci. Éc. Norm. Supér. (4), 46(4):549–627 (2013), 2013.
22.
Zurück zum Zitat H. Edelsbrunner and J.L. Harer. Computational topology. American Mathematical Society, Providence, RI, 2010. An introduction. H. Edelsbrunner and J.L. Harer. Computational topology. American Mathematical Society, Providence, RI, 2010. An introduction.
23.
Zurück zum Zitat E. Kostlan. Complexity theory of numerical linear algebra. J. of Computational and Applied Mathematics, 22:219–230, 1988.MathSciNetCrossRefMATH E. Kostlan. Complexity theory of numerical linear algebra. J. of Computational and Applied Mathematics, 22:219–230, 1988.MathSciNetCrossRefMATH
24.
Zurück zum Zitat M. Lotz. On the volume of tubular neighborhoods of real algebraic varieties. Proc. Amer. Math. Soc., 143(5):1875–1889, 2015.MathSciNetCrossRefMATH M. Lotz. On the volume of tubular neighborhoods of real algebraic varieties. Proc. Amer. Math. Soc., 143(5):1875–1889, 2015.MathSciNetCrossRefMATH
25.
Zurück zum Zitat P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom., 39:419–441, 2008.MathSciNetCrossRefMATH P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom., 39:419–441, 2008.MathSciNetCrossRefMATH
26.
Zurück zum Zitat V. Noferini and A. Townsend. Numerical instability of resultant methods for multidimensional rootfinding. To appear at SIAM J. Num. Analysis. Available at arXiv:1507.00272. V. Noferini and A. Townsend. Numerical instability of resultant methods for multidimensional rootfinding. To appear at SIAM J. Num. Analysis. Available at arXiv:​1507.​00272.
27.
Zurück zum Zitat J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. Part I. Journal of Symbolic Computation, 13:255–299, 1992.MathSciNetCrossRefMATH J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. Part I. Journal of Symbolic Computation, 13:255–299, 1992.MathSciNetCrossRefMATH
29.
Zurück zum Zitat J. Renegar. Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim., 5:506–524, 1995.MathSciNetCrossRefMATH J. Renegar. Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim., 5:506–524, 1995.MathSciNetCrossRefMATH
30.
Zurück zum Zitat J. Renegar. Linear programming, complexity theory and elementary functional analysis. Math. Program., 70:279–351, 1995.MathSciNetMATH J. Renegar. Linear programming, complexity theory and elementary functional analysis. Math. Program., 70:279–351, 1995.MathSciNetMATH
31.
Zurück zum Zitat P. Scheiblechner. On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety. J. Complexity, 23(3):359–379, 2007.MathSciNetCrossRefMATH P. Scheiblechner. On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety. J. Complexity, 23(3):359–379, 2007.MathSciNetCrossRefMATH
32.
Zurück zum Zitat P. Scheiblechner. Castelnuovo-Mumford regularity and computing the de Rham cohomology of smooth projective varieties. Found. Comput. Math., 12(5):541–571, 2012.MathSciNetCrossRefMATH P. Scheiblechner. Castelnuovo-Mumford regularity and computing the de Rham cohomology of smooth projective varieties. Found. Comput. Math., 12(5):541–571, 2012.MathSciNetCrossRefMATH
33.
Zurück zum Zitat M. Shub and S. Smale. Complexity of Bézout’s Theorem I: geometric aspects. Journal of the Amer. Math. Soc., 6:459–501, 1993.MathSciNetMATH M. Shub and S. Smale. Complexity of Bézout’s Theorem I: geometric aspects. Journal of the Amer. Math. Soc., 6:459–501, 1993.MathSciNetMATH
34.
Zurück zum Zitat M. Shub and S. Smale. Complexity of Bézout’s Theorem II: volumes and probabilities. In F. Eyssette and A. Galligo, editors, Computational Algebraic Geometry, volume 109 of Progress in Mathematics, pages 267–285. Birkhäuser, 1993. M. Shub and S. Smale. Complexity of Bézout’s Theorem II: volumes and probabilities. In F. Eyssette and A. Galligo, editors, Computational Algebraic Geometry, volume 109 of Progress in Mathematics, pages 267–285. Birkhäuser, 1993.
35.
Zurück zum Zitat M. Shub and S. Smale. Complexity of Bézout’s Theorem III: condition number and packing. Journal of Complexity, 9:4–14, 1993.MathSciNetCrossRefMATH M. Shub and S. Smale. Complexity of Bézout’s Theorem III: condition number and packing. Journal of Complexity, 9:4–14, 1993.MathSciNetCrossRefMATH
36.
Zurück zum Zitat M. Shub and S. Smale. Complexity of Bézout’s Theorem V: polynomial time. Theoret. Comp. Sci., 133:141–164, 1994.CrossRefMATH M. Shub and S. Smale. Complexity of Bézout’s Theorem V: polynomial time. Theoret. Comp. Sci., 133:141–164, 1994.CrossRefMATH
37.
Zurück zum Zitat M. Shub and S. Smale. Complexity of Bézout’s Theorem IV: probability of success; extensions. SIAM J. of Numer. Anal., 33:128–148, 1996.CrossRefMATH M. Shub and S. Smale. Complexity of Bézout’s Theorem IV: probability of success; extensions. SIAM J. of Numer. Anal., 33:128–148, 1996.CrossRefMATH
38.
Zurück zum Zitat S. Smale. Newton’s method estimates from data at one point. In R. Ewing, K. Gross, and C. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer-Verlag, 1986. S. Smale. Newton’s method estimates from data at one point. In R. Ewing, K. Gross, and C. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer-Verlag, 1986.
39.
Zurück zum Zitat A. Storjohann. Nearly optimal algorithms for computing Smith normal forms of integer matrices. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’96), pages 267–274. ACM Press, 1996. A. Storjohann. Nearly optimal algorithms for computing Smith normal forms of integer matrices. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’96), pages 267–274. ACM Press, 1996.
40.
Zurück zum Zitat H.R. Wüthrich. Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. In E. Specker and V. Strassen, editors, Komplexität von Entscheidungsproblemen, volume 43 of Lect. Notes in Comp. Sci., pages 138–162. Springer-Verlag, 1976. H.R. Wüthrich. Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. In E. Specker and V. Strassen, editors, Komplexität von Entscheidungsproblemen, volume 43 of Lect. Notes in Comp. Sci., pages 138–162. Springer-Verlag, 1976.
Metadaten
Titel
Computing the Homology of Real Projective Sets
verfasst von
Felipe Cucker
Teresa Krick
Michael Shub
Publikationsdatum
04.08.2017
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 4/2018
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-017-9358-8