Skip to main content
Erschienen in: Environmental Earth Sciences 5/2011

01.03.2011 | Original Article

Concentration trends and water-level fluctuations at underground storage tank sites

verfasst von: Alan E. Kehew, Patrick M. Lynch

Erschienen in: Environmental Earth Sciences | Ausgabe 5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Concentration trends of monitor wells utilized in monitored natural attenuation at petroleum underground storage tank sites can be used to predict achievement of regulatory standards if the data approximate a first-order decline trend. However, declining concentration trends often display seasonal and other fluctuations that complicate trend interpretation. Seasonal correlations between concentration and water-level elevation, including in-phase and inverse relationships, constitute one of the most common types of variation. The in-phase fluctuations are most common for monitor wells located in or near the source area of the release. This relationship may be the result of increased contact with the smear zone in the source area during periods of high water table. Conversely, inverse trends of water-level elevation and concentration are most common in downgradient wells beyond the limit of the source area. In a year long study of short-term fluctuations in BTEX and other parameters in a downgradient monitor well, the data suggest that the winter/spring recharge event significantly controls the concentration trends of BTEX as well as inorganic compounds in the well. Recharge and associated water table rise began in late fall and were soon followed by a slug of inorganic ions strongly influenced by road salt application. This slug of recharge diluted the concentrations of petroleum compounds and alkalinity (bicarbonate). Electron acceptors including oxygen, nitrate, and sulfate, which is a component of road salt, are also contributed to the water table during recharge. Oxygen and nitrate were not detected in the monitor well samples and were most likely consumed quickly in biodegradation reactions at the top of the contaminant plume. Sulfate peaked during winter/spring recharge and then slowly declined during the summer and fall, along with redox potential. Alkalinity (bicarbonate) increased during this period, which may represent the coupled oxidation of organic carbon to CO2 with sulfate as the electron acceptor. BTEX concentrations peaked in the fall probably due to the lack of diluting recharge. The slow changes in concentration over the summer and fall months, interpreted to be caused by biodegradation, contrast with the rapid changes associated with dilution during the recharge event.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC (1993) Crude oil in a shallow sand and gravel aquifer—III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl Geochem 8:569–586CrossRef Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC (1993) Crude oil in a shallow sand and gravel aquifer—III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl Geochem 8:569–586CrossRef
Zurück zum Zitat Barker JF, Patrick GC, Major D (1987) Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Groundw Monitor Rev 7:64–71CrossRef Barker JF, Patrick GC, Major D (1987) Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Groundw Monitor Rev 7:64–71CrossRef
Zurück zum Zitat Borden RC, Gomez CA, Becker MT (1995) Geochemical indicators of intrinsic bioremediation. Ground Water 33:180-188CrossRef Borden RC, Gomez CA, Becker MT (1995) Geochemical indicators of intrinsic bioremediation. Ground Water 33:180-188CrossRef
Zurück zum Zitat Borden RC, Daniel RA, LeBrun LE IV, Davis CW (1997a) Intrinsic biodegradation of MTBE and BTEX in a gasoline contaminated aquifer. Water Resour Res 33:1105–1115CrossRef Borden RC, Daniel RA, LeBrun LE IV, Davis CW (1997a) Intrinsic biodegradation of MTBE and BTEX in a gasoline contaminated aquifer. Water Resour Res 33:1105–1115CrossRef
Zurück zum Zitat Borden RC, Hunt MJ, Shafer MB, Barlaz MA (1997b) Anaerobic biodegradation of BTEX in natural aquifer material. USEPA environmental research brief. EPA/600/S-97/003 Borden RC, Hunt MJ, Shafer MB, Barlaz MA (1997b) Anaerobic biodegradation of BTEX in natural aquifer material. USEPA environmental research brief. EPA/600/S-97/003
Zurück zum Zitat Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446CrossRef Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446CrossRef
Zurück zum Zitat Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–371 Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–371
Zurück zum Zitat Chapelle FH, Widdowson MA, Brauner JS, Mendez E III, Casey CC (2003) Methodology for estimating times of remediation associated with monitored natural attenuation. U.S. geological survey, water resources investigations report 03-4057 Chapelle FH, Widdowson MA, Brauner JS, Mendez E III, Casey CC (2003) Methodology for estimating times of remediation associated with monitored natural attenuation. U.S. geological survey, water resources investigations report 03-4057
Zurück zum Zitat Davis EL (1997) How heat can enhance in situ soil and aquifer remediation: important EPA groundwater issue EPA/540/S-97/50218 Davis EL (1997) How heat can enhance in situ soil and aquifer remediation: important EPA groundwater issue EPA/540/S-97/50218
Zurück zum Zitat Davis JW, Klier NJ, Carpenter CL (1994) Natural biological attenuation of benzene in groundwater beneath a manufacturing facility. Groundwater 32:215–226 Davis JW, Klier NJ, Carpenter CL (1994) Natural biological attenuation of benzene in groundwater beneath a manufacturing facility. Groundwater 32:215–226
Zurück zum Zitat Dou J, Liu X, Hu Z, Deng D (2008) Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J Hazard Mater 151:720–729CrossRef Dou J, Liu X, Hu Z, Deng D (2008) Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J Hazard Mater 151:720–729CrossRef
Zurück zum Zitat Flyvberg J, Arvin E, Jensen BK, Olsen SK (1993) Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J Contam Hydrol 12:133–150CrossRef Flyvberg J, Arvin E, Jensen BK, Olsen SK (1993) Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions. J Contam Hydrol 12:133–150CrossRef
Zurück zum Zitat Haag FM, Reinhard M, McCarty PL (1991) Degradation of toluene and p-xylene in an anaerobic microcosm: evidence for sulfate as a terminal electron acceptor. Environ Toxicol Chem 10:1379–1389 Haag FM, Reinhard M, McCarty PL (1991) Degradation of toluene and p-xylene in an anaerobic microcosm: evidence for sulfate as a terminal electron acceptor. Environ Toxicol Chem 10:1379–1389
Zurück zum Zitat Hu Z, Dou J, Liu X, Deng D (2007) Anaerobic biodegradation of benzene series compounds by mixed cultures based on optimal electronic acceptors. J Environ Sci 19:1049–1054CrossRef Hu Z, Dou J, Liu X, Deng D (2007) Anaerobic biodegradation of benzene series compounds by mixed cultures based on optimal electronic acceptors. J Environ Sci 19:1049–1054CrossRef
Zurück zum Zitat Johnson SJ, Woolhouse KJ, Prommer H, Barry DA, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70:343–349CrossRef Johnson SJ, Woolhouse KJ, Prommer H, Barry DA, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70:343–349CrossRef
Zurück zum Zitat Kehew AE (2001) Applied chemical hydrogeology. Prentice-Hall, Inc, Upper Saddle River Kehew AE (2001) Applied chemical hydrogeology. Prentice-Hall, Inc, Upper Saddle River
Zurück zum Zitat Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313CrossRef Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313CrossRef
Zurück zum Zitat Lovley DR, Lonergran DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism GS-15. Appl Environ Microbiol 56:1858–1864 Lovley DR, Lonergran DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism GS-15. Appl Environ Microbiol 56:1858–1864
Zurück zum Zitat Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480 Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
Zurück zum Zitat Lovley DR, Baedecker MJ, Lonergran DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299CrossRef Lovley DR, Baedecker MJ, Lonergran DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299CrossRef
Zurück zum Zitat Major DW, Mayfield CI, Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Groundwater 26:8–14 Major DW, Mayfield CI, Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Groundwater 26:8–14
Zurück zum Zitat McGuire JT, Smith EW, Long DT, Hyndman DW, Haack SK, Klug MJ, Velbel MA (2000) Temporal variations in parameters reflecting terminal electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem Geol 169:471–485CrossRef McGuire JT, Smith EW, Long DT, Hyndman DW, Haack SK, Klug MJ, Velbel MA (2000) Temporal variations in parameters reflecting terminal electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem Geol 169:471–485CrossRef
Zurück zum Zitat Scholl MA, Cozzarelli IM, Christenson SC (2006) Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate. J Contam Hydrol 86:239–261CrossRef Scholl MA, Cozzarelli IM, Christenson SC (2006) Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate. J Contam Hydrol 86:239–261CrossRef
Zurück zum Zitat Schreiber ME, Carey GR, Feinstein DT, Bahr JM (2004) Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation. J Contam Hydrol 73:99–127CrossRef Schreiber ME, Carey GR, Feinstein DT, Bahr JM (2004) Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation. J Contam Hydrol 73:99–127CrossRef
Zurück zum Zitat Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRef Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRef
Zurück zum Zitat USEPA (1997b) Use of monitored natural attenuation at Superfund, RCRA corrective action, and underground storage tanks. Office of solid waste and emergency response, Directive 9200.4-17, p 42 USEPA (1997b) Use of monitored natural attenuation at Superfund, RCRA corrective action, and underground storage tanks. Office of solid waste and emergency response, Directive 9200.4-17, p 42
Zurück zum Zitat USEPA (1999) Final OSWER monitored natural attenuation policy. Office of solid waste and emergency response, Oswer directive 9200.4-17P USEPA (1999) Final OSWER monitored natural attenuation policy. Office of solid waste and emergency response, Oswer directive 9200.4-17P
Zurück zum Zitat Zemo DA (2006) Sampling in the smear zone: evaluation of nondissolved bias and associated BTEX, MTBE, and TPH concentrations in groundwater samples. Groundw Monit Remed 26:53–59 Zemo DA (2006) Sampling in the smear zone: evaluation of nondissolved bias and associated BTEX, MTBE, and TPH concentrations in groundwater samples. Groundw Monit Remed 26:53–59
Metadaten
Titel
Concentration trends and water-level fluctuations at underground storage tank sites
verfasst von
Alan E. Kehew
Patrick M. Lynch
Publikationsdatum
01.03.2011
Verlag
Springer-Verlag
Erschienen in
Environmental Earth Sciences / Ausgabe 5/2011
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-010-0583-6

Weitere Artikel der Ausgabe 5/2011

Environmental Earth Sciences 5/2011 Zur Ausgabe