Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.11.2014 | Original Article | Ausgabe 1/2017

International Journal of Machine Learning and Cybernetics 1/2017

Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 1/2017
Autoren:
Prem Kumar Singh, Aswani Kumar Cherukuri, Jinhai Li

Abstract

In this paper we propose a method for reducing the number of formal concepts in formal concept analysis of data with fuzzy attributes. We compute the weight of fuzzy formal concepts based on Shannon entropy. Further, the number of fuzzy formal concepts is reduced at chosen granulation of their computed weight. We show that the results obtained from the proposed method are in good agreement with Levenshtein distance method and interval–valued fuzzy formal concepts method but with less computational complexity.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

International Journal of Machine Learning and Cybernetics 1/2017 Zur Ausgabe