Skip to main content

2021 | OriginalPaper | Buchkapitel

6. Concrete Structures

verfasst von : Thomas Gernay, Venkatesh Kodur, Mohannad Z. Naser, Reza Imani, Luke Bisby

Erschienen in: International Handbook of Structural Fire Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter examines structural fire engineering considerations that are specific to concrete, which is a common construction material. First, thermal and mechanical properties of concrete at elevated temperatures are discussed. Second, failure modes specific to concrete structures (e.g., explosive spalling) are examined. Lastly, pertinent analysis techniques for structural fire engineering applications involving concrete structures are presented. Overall, analyzing the effects of fire on concrete material and concrete structures is a complex task. Concrete is, by itself, a complex composite material, composed of aggregates and a cementitious matrix that hardens over time. There exists a large variety of concrete compositions, which differ by the types of aggregates and cementitious matrix, as well as the presence of fibers and other adjuvants. These different compositions result in a variety of concretes that are generally grouped under categories based on weight, strength, presence of fibers, and performance level. This chapter examines each of these different aspects with respect to structural fire engineering designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beitel, J., Iwankiw, N. (2008). Analysis of needs and existing capabilities for full-scale fire resistance testing. US Department of Commerce, National Institute of Standards and Technology. Beitel, J., Iwankiw, N. (2008). Analysis of needs and existing capabilities for full-scale fire resistance testing. US Department of Commerce, National Institute of Standards and Technology.
2.
Zurück zum Zitat Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447.CrossRef Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447.CrossRef
3.
Zurück zum Zitat Phan, L., & Carino, N. (1998). Review of mechanical properties of HSC at elevated temperature. Journal of Materials in Civil Engineering (ASCE), 10:1(58), 58–65.CrossRef Phan, L., & Carino, N. (1998). Review of mechanical properties of HSC at elevated temperature. Journal of Materials in Civil Engineering (ASCE), 10:1(58), 58–65.CrossRef
4.
Zurück zum Zitat Dwaikat, M. B., & Kodur, V. K. R. (2010). Fire induced spalling in high strength concrete beams. Fire Technology, 46(1), 251–274.CrossRef Dwaikat, M. B., & Kodur, V. K. R. (2010). Fire induced spalling in high strength concrete beams. Fire Technology, 46(1), 251–274.CrossRef
5.
Zurück zum Zitat Kodur, V. K. R. (2000). Spalling in high strength concrete exposed to fire: Concerns, causes, critical parameters and cures. Advanced Technology in Structural Engineering, 1–9. Kodur, V. K. R. (2000). Spalling in high strength concrete exposed to fire: Concerns, causes, critical parameters and cures. Advanced Technology in Structural Engineering, 1–9.
6.
Zurück zum Zitat Gernay, T. (2016). Fire performance of columns made of Normal and high strength concrete: A comparative analysis. Key Engineering Materials, 711, 564–571. Trans Tech Publications.CrossRef Gernay, T. (2016). Fire performance of columns made of Normal and high strength concrete: A comparative analysis. Key Engineering Materials, 711, 564–571. Trans Tech Publications.CrossRef
7.
Zurück zum Zitat Go, C. G., Tang, J. R., Chi, J. H., Chen, C. T., & Huang, Y. L. (2012). Fire-resistance property of reinforced lightweight aggregate concrete wall. Construction and Building Materials, 30, 725–733.CrossRef Go, C. G., Tang, J. R., Chi, J. H., Chen, C. T., & Huang, Y. L. (2012). Fire-resistance property of reinforced lightweight aggregate concrete wall. Construction and Building Materials, 30, 725–733.CrossRef
8.
Zurück zum Zitat Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete. Elsevier. Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete. Elsevier.
9.
Zurück zum Zitat Topçu, İ. B., & Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108–4116.CrossRef Topçu, İ. B., & Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108–4116.CrossRef
10.
Zurück zum Zitat Mun, K. J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construction and Building Materials, 21, 1583–1588.CrossRef Mun, K. J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construction and Building Materials, 21, 1583–1588.CrossRef
11.
Zurück zum Zitat Eurocode (2004). “EN, 1992-1-2: design of concrete structures. Part 1–2: general rules—structural fire design,” Eurocode 2, European Committee for Standardization, Brussels, Belgium. Eurocode (2004). “EN, 1992-1-2: design of concrete structures. Part 1–2: general rules—structural fire design,” Eurocode 2, European Committee for Standardization, Brussels, Belgium.
12.
Zurück zum Zitat Altun, F., Haktanir, T., & Ari, K. (2007). Effects of steel fiber addition on mechanical properties of concrete and RC beams. Construction and Building Materials, 21(3), 654–661.CrossRef Altun, F., Haktanir, T., & Ari, K. (2007). Effects of steel fiber addition on mechanical properties of concrete and RC beams. Construction and Building Materials, 21(3), 654–661.CrossRef
13.
Zurück zum Zitat Lau, & Anson, M. (2006). Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, 36(9), 1698–1707.CrossRef Lau, & Anson, M. (2006). Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, 36(9), 1698–1707.CrossRef
14.
Zurück zum Zitat Lie, T. T. and Kodur, V. R. (1995). “Thermal properties of fibre-reinforced concrete at elevated temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa, Canada. Lie, T. T. and Kodur, V. R. (1995). “Thermal properties of fibre-reinforced concrete at elevated temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa, Canada.
15.
Zurück zum Zitat Kalifa, P., Chene, G., & Galle, C. (2001). High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cement and Concrete Research, 31(10), 1487–1499.CrossRef Kalifa, P., Chene, G., & Galle, C. (2001). High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cement and Concrete Research, 31(10), 1487–1499.CrossRef
16.
Zurück zum Zitat Bangi, M. R., & Horiguchi, T. (2012). Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 42(2), 459–466.CrossRef Bangi, M. R., & Horiguchi, T. (2012). Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 42(2), 459–466.CrossRef
17.
Zurück zum Zitat Zeiml, M., Leithner, D., Lackner, R., & Mang, H. A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cement and Concrete Research, 36(5), 929–942.CrossRef Zeiml, M., Leithner, D., Lackner, R., & Mang, H. A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cement and Concrete Research, 36(5), 929–942.CrossRef
18.
Zurück zum Zitat Anderberg, Y., & Thelandersson, S. (1976). Stress and Deformation Characteristics of Concrete at High Temperatures. 2. Experimental Investigation and Material Behaviour Model. (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 54; Vol. Bulletin 54). Lund Institute of Technology. Anderberg, Y., & Thelandersson, S. (1976). Stress and Deformation Characteristics of Concrete at High Temperatures. 2. Experimental Investigation and Material Behaviour Model. (Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 54; Vol. Bulletin 54). Lund Institute of Technology.
19.
Zurück zum Zitat Andersen, N. E., & Lauridsen, D. H. (1999). Hollow core concrete slabs. Danish Institute of Fire Technology. Andersen, N. E., & Lauridsen, D. H. (1999). Hollow core concrete slabs. Danish Institute of Fire Technology.
20.
Zurück zum Zitat Andersen, N.E., Laurisden, D.H. (1999). TT-roof slabs. Hollow core concrete slabs. Technical report X52650, parts 1 and 2. Danish institute of fire technology, Hvidovre. Andersen, N.E., Laurisden, D.H. (1999). TT-roof slabs. Hollow core concrete slabs. Technical report X52650, parts 1 and 2. Danish institute of fire technology, Hvidovre.
22.
Zurück zum Zitat Majorana, C. E., Salomoni, V. A., Mazzucco, G., & Khoury, G. A. (2010). An approach for modelling concrete spalling in finite strains. Mathematics and Computers in Simulation, 80, 1694–1712.MathSciNetMATHCrossRef Majorana, C. E., Salomoni, V. A., Mazzucco, G., & Khoury, G. A. (2010). An approach for modelling concrete spalling in finite strains. Mathematics and Computers in Simulation, 80, 1694–1712.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Annerel, E., Taerwe, L., Merci, B., Jansen, D., Bamonte, P., & Felicetti, R. (2013a). Thermo-mechanical analysis of an underground car park structure exposed to fire. Fire Safety Journal, 57, 96–106.CrossRef Annerel, E., Taerwe, L., Merci, B., Jansen, D., Bamonte, P., & Felicetti, R. (2013a). Thermo-mechanical analysis of an underground car park structure exposed to fire. Fire Safety Journal, 57, 96–106.CrossRef
24.
Zurück zum Zitat Annerel, E., Lu, L., & Taerwe, L. (2013b). Punching shear tests on flat concrete slabs exposed to fire. Fire Safety Journal, 57, 83–95.CrossRef Annerel, E., Lu, L., & Taerwe, L. (2013b). Punching shear tests on flat concrete slabs exposed to fire. Fire Safety Journal, 57, 83–95.CrossRef
25.
Zurück zum Zitat Overbeek, A., Gijsbers, F. (2008). Study of the structural behavior during fire of hollow core slabs as used in the Lloyd Street in Rotterdam, TNO-Report no. 2007-D-R1236/C, (in Dutch). Overbeek, A., Gijsbers, F. (2008). Study of the structural behavior during fire of hollow core slabs as used in the Lloyd Street in Rotterdam, TNO-Report no. 2007-D-R1236/C, (in Dutch).
26.
Zurück zum Zitat Burnier, O. (2011). Reconstitution de l’incendie de deux voitures dans le parking de la Tour d’Ivoire à Montreux, le 9 décembre 2010, Travail de diplôme, heig-vd ed., Yverdon-les-Bains. Burnier, O. (2011). Reconstitution de l’incendie de deux voitures dans le parking de la Tour d’Ivoire à Montreux, le 9 décembre 2010, Travail de diplôme, heig-vd ed., Yverdon-les-Bains.
27.
Zurück zum Zitat Gernay, T., & Dimia, M. S. (2013). Structural behaviour of concrete columns under natural fires. Engineering Computations, 30(6), 854–872.CrossRef Gernay, T., & Dimia, M. S. (2013). Structural behaviour of concrete columns under natural fires. Engineering Computations, 30(6), 854–872.CrossRef
28.
Zurück zum Zitat Yi-Hai, L., & Franssen, J. M. (2011). Test results and model for the residual compressive strength of concrete after a fire. Journal of Structural Fire Engineering, 2(1), 29–44.CrossRef Yi-Hai, L., & Franssen, J. M. (2011). Test results and model for the residual compressive strength of concrete after a fire. Journal of Structural Fire Engineering, 2(1), 29–44.CrossRef
29.
Zurück zum Zitat Gernay, T., & Franssen, J. M. (2012). A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Safety Journal, 51, 1–9.CrossRef Gernay, T., & Franssen, J. M. (2012). A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Safety Journal, 51, 1–9.CrossRef
30.
Zurück zum Zitat Gernay, T. (2019). Fire resistance and burnout resistance of reinforced concrete columns. Fire Safety Journal, 104, 67–78.CrossRef Gernay, T. (2019). Fire resistance and burnout resistance of reinforced concrete columns. Fire Safety Journal, 104, 67–78.CrossRef
31.
Zurück zum Zitat Kodur, V. R., & Harmathy, T. Z. (2008). Properties of building materials. In P. J. DiNenno (Ed.), SFPE handbook of fire protection engineering. National Fire Protection Association. Kodur, V. R., & Harmathy, T. Z. (2008). Properties of building materials. In P. J. DiNenno (Ed.), SFPE handbook of fire protection engineering. National Fire Protection Association.
32.
Zurück zum Zitat Eurocode 2 (2004) “EN, 1992-1-2: design of concrete structures. Part 1–2: general rules—structural fire design,” Eurocode 2, European Committee for Standardization, Brussels, Belgium. Eurocode 2 (2004) “EN, 1992-1-2: design of concrete structures. Part 1–2: general rules—structural fire design,” Eurocode 2, European Committee for Standardization, Brussels, Belgium.
33.
Zurück zum Zitat ASTM E1530 (2011) “Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique,” ASTM E1530, ASTM International, West Conshohocken, PA, USA. ASTM E1530 (2011) “Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique,” ASTM E1530, ASTM International, West Conshohocken, PA, USA.
34.
Zurück zum Zitat Adl-Zarrabi, B., Bostrom, L., & Wickstrom, U. (2006). Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature. Fire and Materials, 30(5), 359–369.CrossRef Adl-Zarrabi, B., Bostrom, L., & Wickstrom, U. (2006). Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature. Fire and Materials, 30(5), 359–369.CrossRef
35.
Zurück zum Zitat Shin, K.-Y., Kim, S.-B., Kim, J.-H., Chung, M., & Jung, P.-S. (2002). Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Engineering and Design, 212(1–3), 233–241.CrossRef Shin, K.-Y., Kim, S.-B., Kim, J.-H., Chung, M., & Jung, P.-S. (2002). Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Engineering and Design, 212(1–3), 233–241.CrossRef
36.
Zurück zum Zitat ASCE (1992). Structural Fire Protection, ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers, New York, NY, USA. ASCE (1992). Structural Fire Protection, ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers, New York, NY, USA.
37.
Zurück zum Zitat Bažant, Z. P., & Kaplan, M. F. (1996). Concrete at high temperatures: Material properties and mathematical models. Longman Group Limited. Bažant, Z. P., & Kaplan, M. F. (1996). Concrete at high temperatures: Material properties and mathematical models. Longman Group Limited.
38.
Zurück zum Zitat Harmathy, T. Z., & Allen, L. W. (1973). Thermal properties of selected masonry unit concretes. Journal American Concrete Institution, 70(2), 132–142. Harmathy, T. Z., & Allen, L. W. (1973). Thermal properties of selected masonry unit concretes. Journal American Concrete Institution, 70(2), 132–142.
39.
Zurück zum Zitat Kodur, V. R., & Sultan, M. A. (1998). Thermal properties of high strength concrete at elevated temperatures. American Concrete Institute, Special Publication, SP-179, 467–480. Kodur, V. R., & Sultan, M. A. (1998). Thermal properties of high strength concrete at elevated temperatures. American Concrete Institute, Special Publication, SP-179, 467–480.
40.
Zurück zum Zitat Phan, L. T. (1996). “Fire performance of high-strength concrete: a report of the state-of-the-art,” Tech. Rep., National Institute of Standards and Technology, Gaithersburg, MD, USA. Phan, L. T. (1996). “Fire performance of high-strength concrete: a report of the state-of-the-art,” Tech. Rep., National Institute of Standards and Technology, Gaithersburg, MD, USA.
41.
Zurück zum Zitat ASTM C1269 (2011) “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM C1269, ASTM International, West Conshohocken, PA, USA. ASTM C1269 (2011) “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM C1269, ASTM International, West Conshohocken, PA, USA.
42.
Zurück zum Zitat Harmathy, T. Z. (1970). Thermal properties of concrete at elevated temperatures. ASTM Journal of Materials, 5(1), 47–74. Harmathy, T. Z. (1970). Thermal properties of concrete at elevated temperatures. ASTM Journal of Materials, 5(1), 47–74.
43.
Zurück zum Zitat Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and materials. McGraw-Hill. Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and materials. McGraw-Hill.
44.
Zurück zum Zitat Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete. Pearson Education. Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete. Pearson Education.
45.
Zurück zum Zitat Khaliq, W., & Kodur, V. (2012). An approach to model the effect of tie configuration on fire performance of concrete columns. ACI Spring Convention. Khaliq, W., & Kodur, V. (2012). An approach to model the effect of tie configuration on fire performance of concrete columns. ACI Spring Convention.
46.
Zurück zum Zitat Neville, M. (2004). Properties of concrete. Pearson Education. Neville, M. (2004). Properties of concrete. Pearson Education.
47.
Zurück zum Zitat Shah, S. P. (1991). Do fibers increase the tensile strength of cement based matrixes? ACI Materials Journal, 88(6), 595–602. Shah, S. P. (1991). Do fibers increase the tensile strength of cement based matrixes? ACI Materials Journal, 88(6), 595–602.
48.
Zurück zum Zitat Bazant, Z. P., & Chern, J.-C. (1987). Stress-induced thermal and shrinkage strains in concrete. Journal of Engineering Mechanics, 113(10), 1493–1511.CrossRef Bazant, Z. P., & Chern, J.-C. (1987). Stress-induced thermal and shrinkage strains in concrete. Journal of Engineering Mechanics, 113(10), 1493–1511.CrossRef
49.
Zurück zum Zitat Harmathy, T. Z. (1967). A comprehensive creep model. Journal of Basic Engineering, 89(3), 496–502.CrossRef Harmathy, T. Z. (1967). A comprehensive creep model. Journal of Basic Engineering, 89(3), 496–502.CrossRef
50.
Zurück zum Zitat Purkiss, J. A. (2007). Fire safety engineering design of structures. Butterworth-Heinemann.CrossRef Purkiss, J. A. (2007). Fire safety engineering design of structures. Butterworth-Heinemann.CrossRef
51.
Zurück zum Zitat Khaliq, W. (2012). Performance characterization of high performance concretes under fire conditions [Ph.D. thesis], Michigan State University. Khaliq, W. (2012). Performance characterization of high performance concretes under fire conditions [Ph.D. thesis], Michigan State University.
52.
Zurück zum Zitat Kodur, V. K. R., Dwaikat, M. M. S., & Dwaikat, M. B. (2008). High temperature properties of concrete for fire resistance modeling of structures. ACI Materials Journal, 105(5), 517–527. Kodur, V. K. R., Dwaikat, M. M. S., & Dwaikat, M. B. (2008). High temperature properties of concrete for fire resistance modeling of structures. ACI Materials Journal, 105(5), 517–527.
53.
Zurück zum Zitat Flynn, D. R. (1999). “Response of high performance concrete to fire conditions: review of thermal property data and measurement techniques,” Tech. Rep., National Institute of Standards and Technology, Millwood, VA, USA. Flynn, D. R. (1999). “Response of high performance concrete to fire conditions: review of thermal property data and measurement techniques,” Tech. Rep., National Institute of Standards and Technology, Millwood, VA, USA.
54.
Zurück zum Zitat Kodur, V. (2014). Properties of concrete at elevated temperatures. ISRN Civil Engineering, 2014, 1–15.CrossRef Kodur, V. (2014). Properties of concrete at elevated temperatures. ISRN Civil Engineering, 2014, 1–15.CrossRef
55.
Zurück zum Zitat Kodur, V., & Khaliq, W. (2011). Effect of temperature on thermal properties of different types of high-strength concrete. Journal of Materials in Civil Engineering, ASCE, 23(6), 793–801.CrossRef Kodur, V., & Khaliq, W. (2011). Effect of temperature on thermal properties of different types of high-strength concrete. Journal of Materials in Civil Engineering, ASCE, 23(6), 793–801.CrossRef
56.
Zurück zum Zitat RILEM TC 129-MHT. (1995). Test methods for mechanical properties of concrete at high temperatures—Compressive strength for service and accident conditions. Materials and Structures, 28(3), 410–414. RILEM TC 129-MHT. (1995). Test methods for mechanical properties of concrete at high temperatures—Compressive strength for service and accident conditions. Materials and Structures, 28(3), 410–414.
57.
Zurück zum Zitat RILEM Technical Committee 200-HTC Ulrich. (2007). Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures—modelling and applications: Part 2: Stress–strain relation. Materials and Structures, 40, 855–864.CrossRef RILEM Technical Committee 200-HTC Ulrich. (2007). Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures—modelling and applications: Part 2: Stress–strain relation. Materials and Structures, 40, 855–864.CrossRef
58.
Zurück zum Zitat Peng, G., & Anson, M. (1999). Fire behavior of high-performance concrete made with silica fume at various moisture contents. Materials Journal, 96(3), 405–409. Peng, G., & Anson, M. (1999). Fire behavior of high-performance concrete made with silica fume at various moisture contents. Materials Journal, 96(3), 405–409.
59.
Zurück zum Zitat Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44(8), 1015–1022.CrossRef Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44(8), 1015–1022.CrossRef
60.
Zurück zum Zitat Carette, G. G., Painter, K. E., & Malhotra, V. M. (1982). Sustained high temperature effect on concretes made with normal Portland cement, normal Portland cement and slag, or normal Portland cement and fly ash. Concrete International, 4(7), 41–51. Carette, G. G., Painter, K. E., & Malhotra, V. M. (1982). Sustained high temperature effect on concretes made with normal Portland cement, normal Portland cement and slag, or normal Portland cement and fly ash. Concrete International, 4(7), 41–51.
61.
Zurück zum Zitat Felicetti, R., Gambarova, P. G., Rosati, G. P., Corsi, F., and Giannuzzi, G. (1996). “Residual mechanical properties of high strength concretes subjected to high-temperature cycles,” in Proceedings of the International Symposium of Utilization of High-Strength/High-Performance Concrete, pp. 579–588, Paris, France. Felicetti, R., Gambarova, P. G., Rosati, G. P., Corsi, F., and Giannuzzi, G. (1996). “Residual mechanical properties of high strength concretes subjected to high-temperature cycles,” in Proceedings of the International Symposium of Utilization of High-Strength/High-Performance Concrete, pp. 579–588, Paris, France.
62.
Zurück zum Zitat Purkiss, J. A. (1984). Steel fibre reinforced concrete at elevated temperatures. International Journal of Cement Composites and Lightweight Concrete, 6(3), 179–184.CrossRef Purkiss, J. A. (1984). Steel fibre reinforced concrete at elevated temperatures. International Journal of Cement Composites and Lightweight Concrete, 6(3), 179–184.CrossRef
63.
Zurück zum Zitat Rossi, P. (1994). Steel fiber reinforced concretes (SFRC): An example of French research. ACI Materials Journal, 91(3), 273–279. Rossi, P. (1994). Steel fiber reinforced concretes (SFRC): An example of French research. ACI Materials Journal, 91(3), 273–279.
64.
Zurück zum Zitat Kodur, V. R. (1999). Fibre-reinforced concrete for enhancing structural fire resistance of columns. Fibre-Structural Applications of Fibre-Reinforced Concrete, ACI, SP-182, 215–234. Kodur, V. R. (1999). Fibre-reinforced concrete for enhancing structural fire resistance of columns. Fibre-Structural Applications of Fibre-Reinforced Concrete, ACI, SP-182, 215–234.
65.
Zurück zum Zitat Cruz, C. R. (1966). Elastic properties of concrete at high temperatures. Journal of the PCA Research and Development Laboratories, 8, 37–45. Cruz, C. R. (1966). Elastic properties of concrete at high temperatures. Journal of the PCA Research and Development Laboratories, 8, 37–45.
66.
Zurück zum Zitat Castillo, C., & Durrani, A. J. (1990). Effect of transient high temperature on high-strength concrete. ACI Materials Journal, 87(1), 47–53. Castillo, C., & Durrani, A. J. (1990). Effect of transient high temperature on high-strength concrete. ACI Materials Journal, 87(1), 47–53.
67.
Zurück zum Zitat Kodur, V. K. R., Wang, T. C., & Cheng, F. P. (2004). Predicting the fire resistance behaviour of high strength concrete columns. Cement and Concrete Composites, 26(2), 141–153.CrossRef Kodur, V. K. R., Wang, T. C., & Cheng, F. P. (2004). Predicting the fire resistance behaviour of high strength concrete columns. Cement and Concrete Composites, 26(2), 141–153.CrossRef
68.
Zurück zum Zitat Chen, B., & Liu, J. (2004). Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research, 34(6), 1065–1069.CrossRef Chen, B., & Liu, J. (2004). Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research, 34(6), 1065–1069.CrossRef
69.
Zurück zum Zitat Schneider, U. (1988). Concrete at high temperatures—A general review. Fire Safety Journal, 13(1), 55–68.CrossRef Schneider, U. (1988). Concrete at high temperatures—A general review. Fire Safety Journal, 13(1), 55–68.CrossRef
70.
Zurück zum Zitat Raut, N. (2011). Response of high strength concrete columns under fire induced biaxial bending [Ph.D. thesis], Michigan State University, East Lansing, Mich, USA. Raut, N. (2011). Response of high strength concrete columns under fire induced biaxial bending [Ph.D. thesis], Michigan State University, East Lansing, Mich, USA.
71.
Zurück zum Zitat Khoury, G. A., Grainger, B. N., & Sullivan, P. J. E. (1985). Strain of concrete during fire heating to 600∘C. Magazine of Concrete Research, 37(133), 195–215.CrossRef Khoury, G. A., Grainger, B. N., & Sullivan, P. J. E. (1985). Strain of concrete during fire heating to 600∘C. Magazine of Concrete Research, 37(133), 195–215.CrossRef
72.
Zurück zum Zitat Torelli, G., Gillie, M., Mandal, P., & Tran, V. X. (2017). A multiaxial load-induced thermal strain constitutive model for concrete. International Journal of Solids and Structures, 108, 115–125.CrossRef Torelli, G., Gillie, M., Mandal, P., & Tran, V. X. (2017). A multiaxial load-induced thermal strain constitutive model for concrete. International Journal of Solids and Structures, 108, 115–125.CrossRef
73.
Zurück zum Zitat Terro, M. (1998). Numerical modeling of the behavior of concrete structures in fire. ACI Structural Journal, 95(2), 183–193. Terro, M. (1998). Numerical modeling of the behavior of concrete structures in fire. ACI Structural Journal, 95(2), 183–193.
74.
Zurück zum Zitat Shakya, A. M. (2016). Flexural and shear response of precast prestressed concrete hollowcore slabs under fire conditions. PhD dissertation. Michigan State University Shakya, A. M. (2016). Flexural and shear response of precast prestressed concrete hollowcore slabs under fire conditions. PhD dissertation. Michigan State University
75.
Zurück zum Zitat Anderberg, Y. (1988). Modelling steel behaviour. Fire Safety Journal, 13. Anderberg, Y. (1988). Modelling steel behaviour. Fire Safety Journal, 13.
76.
Zurück zum Zitat Shakya, A. M., & Kodur, V. K. R. (2016). Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand. Construction and Building Materials, 124, 74–84.CrossRef Shakya, A. M., & Kodur, V. K. R. (2016). Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand. Construction and Building Materials, 124, 74–84.CrossRef
77.
Zurück zum Zitat Poh, K. W. (2001). Stress-strain-temperature relationship for structural steel. Journal of Materials in Civil Engineering, 135, 371–379.CrossRef Poh, K. W. (2001). Stress-strain-temperature relationship for structural steel. Journal of Materials in Civil Engineering, 135, 371–379.CrossRef
78.
Zurück zum Zitat Dwaikat, M. B. (2009). Flexural response of reinforced concrete beams ex-posed to fire. PhD dissertation. Michigan State University Dwaikat, M. B. (2009). Flexural response of reinforced concrete beams ex-posed to fire. PhD dissertation. Michigan State University
79.
Zurück zum Zitat Huang, Z.-F., Tan, K.-H., & Ting, S.-K. (2006). Heating rate and boundary restraint effects on fire resistance of steel columns with creep. Engineering Structures, 28, 805–817.CrossRef Huang, Z.-F., Tan, K.-H., & Ting, S.-K. (2006). Heating rate and boundary restraint effects on fire resistance of steel columns with creep. Engineering Structures, 28, 805–817.CrossRef
80.
Zurück zum Zitat Kirby, B., & Preston, R. (1988). High temperature properties of hot-rolled, structural steels for use in fire engineering design studies. Fire Safety Journal, 13, 1.CrossRef Kirby, B., & Preston, R. (1988). High temperature properties of hot-rolled, structural steels for use in fire engineering design studies. Fire Safety Journal, 13, 1.CrossRef
81.
Zurück zum Zitat Harmathy, T., Stanzak, W. (1970). Elevated-Temperature Tensile and Creep Properties of Some Structural and Prestressing Steels, In Fire Test Performance, ASTM STP 464, American Society for Testing and Materials. Harmathy, T., Stanzak, W. (1970). Elevated-Temperature Tensile and Creep Properties of Some Structural and Prestressing Steels, In Fire Test Performance, ASTM STP 464, American Society for Testing and Materials.
82.
Zurück zum Zitat Kodur, V. K., & Aziz, E. M. (2015). Effect of temperature on creep in ASTM A572 high-strength low-alloy steels. Materials and Structures, 48(6), 1669–1677.CrossRef Kodur, V. K., & Aziz, E. M. (2015). Effect of temperature on creep in ASTM A572 high-strength low-alloy steels. Materials and Structures, 48(6), 1669–1677.CrossRef
83.
Zurück zum Zitat MacLean, K. (2007). Post-fire assessment of unbonded post-tensioned concrete slabs: Strand Deterioration and Prestress Loss, Master’s Thesis, Queen’s University, Kingston, Ontario, Canada. MacLean, K. (2007). Post-fire assessment of unbonded post-tensioned concrete slabs: Strand Deterioration and Prestress Loss, Master’s Thesis, Queen’s University, Kingston, Ontario, Canada.
84.
Zurück zum Zitat MacLean, K., Bisby L., MacDougall, C. (2008). Post-fire assessment of unbonded post-tensioned slabs: Strand deterioration and prestress loss, ACI-SP 255: Designing Concrete Structures for Fire Safety, American Concrete Institute. MacLean, K., Bisby L., MacDougall, C. (2008). Post-fire assessment of unbonded post-tensioned slabs: Strand deterioration and prestress loss, ACI-SP 255: Designing Concrete Structures for Fire Safety, American Concrete Institute.
85.
Zurück zum Zitat Abrams, M. S., and Cruz, C. R.. (1961). The Behavior at High Temperature of Steel Strand for Prestressed Concrete. No. 134. Abrams, M. S., and Cruz, C. R.. (1961). The Behavior at High Temperature of Steel Strand for Prestressed Concrete. No. 134.
86.
Zurück zum Zitat Wei, Y., Zhang, L., Au, F., Li, J., & Tsang, N. (2016). Thermal creep and relaxation of prestressing steel. Construction and Building Materials, 128. Wei, Y., Zhang, L., Au, F., Li, J., & Tsang, N. (2016). Thermal creep and relaxation of prestressing steel. Construction and Building Materials, 128.
87.
Zurück zum Zitat Gales, J., Robertson, L., & Bisby, L. (2016). Creep of prestressing steels in fire. Fire and Materials, 40. Gales, J., Robertson, L., & Bisby, L. (2016). Creep of prestressing steels in fire. Fire and Materials, 40.
88.
Zurück zum Zitat ACI (2014). “Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies” ACI 216.1–14, American Concrete Institute, Detroit, MI, USA. ACI (2014). “Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies” ACI 216.1–14, American Concrete Institute, Detroit, MI, USA.
89.
Zurück zum Zitat ASTM. (2018). “Standard test methods for fire tests of building construction and materials” ASTM E119-18a. ASTM International. ASTM. (2018). “Standard test methods for fire tests of building construction and materials” ASTM E119-18a. ASTM International.
90.
Zurück zum Zitat Moss, P. J., Dhakal, R. P., Wang, G., & Buchanan, A. H. (2008a). The fire behaviour of multi-bay, two-way reinforced concrete slabs. Engineering Structures, 30(12), 3566–3573.CrossRef Moss, P. J., Dhakal, R. P., Wang, G., & Buchanan, A. H. (2008a). The fire behaviour of multi-bay, two-way reinforced concrete slabs. Engineering Structures, 30(12), 3566–3573.CrossRef
91.
Zurück zum Zitat Moss, P. J., Dhakal, R. P., Wang, G., & Buchanan, A. H. (2008b). The fire behaviour of multi-bay, two-way reinforced concrete slabs. Journal of Engineering Structures, 30, 12.CrossRef Moss, P. J., Dhakal, R. P., Wang, G., & Buchanan, A. H. (2008b). The fire behaviour of multi-bay, two-way reinforced concrete slabs. Journal of Engineering Structures, 30, 12.CrossRef
92.
Zurück zum Zitat Clifton, G. C., Gillies, A., Mago, N. (2010). “The slab panel method: Design of composite floor systems for dependable inelastic response to severe fires” Proceedings of the 6th International Conference of Structures in Fire (SiF), East Lansing, MI, USA. Clifton, G. C., Gillies, A., Mago, N. (2010). “The slab panel method: Design of composite floor systems for dependable inelastic response to severe fires” Proceedings of the 6th International Conference of Structures in Fire (SiF), East Lansing, MI, USA.
93.
Zurück zum Zitat ASCE. (2016). ASCE/SEI 7 minimum design loads for buildings and other structures. American Society of Civil Engineers. ASCE. (2016). ASCE/SEI 7 minimum design loads for buildings and other structures. American Society of Civil Engineers.
94.
Zurück zum Zitat Bailey, C. G. (2004). Membrane action of slab/beam composite floor systems in fire. Engineering Structures, 26, 1691–1703.CrossRef Bailey, C. G. (2004). Membrane action of slab/beam composite floor systems in fire. Engineering Structures, 26, 1691–1703.CrossRef
95.
Zurück zum Zitat Wang, Y. C. (2000). An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests. Engineering Structures, 22(5), 401–412.CrossRef Wang, Y. C. (2000). An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests. Engineering Structures, 22(5), 401–412.CrossRef
96.
Zurück zum Zitat Lim, L., Buchanan, A., Moss, P., & Franssen, J. M. (2004). Numerical modelling of two-way reinforced concrete slabs in fire. Engineering Structures, 26(8), 1081–1091.CrossRef Lim, L., Buchanan, A., Moss, P., & Franssen, J. M. (2004). Numerical modelling of two-way reinforced concrete slabs in fire. Engineering Structures, 26(8), 1081–1091.CrossRef
97.
Zurück zum Zitat Vassart, O., Bailey, C. G., Hawes, M., Nadjai, A., Sims, W. I., Zhao, B., Gernay, T., & Franssen, J. M. (2012). Large-scale fire test of unprotected cellular beam acting in membrane action. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 165(7), 327–334. Vassart, O., Bailey, C. G., Hawes, M., Nadjai, A., Sims, W. I., Zhao, B., Gernay, T., & Franssen, J. M. (2012). Large-scale fire test of unprotected cellular beam acting in membrane action. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 165(7), 327–334.
98.
Zurück zum Zitat Zhao, B., & Roosefid, M. (2011). Experimental and numerical investigations of steel and concrete composite floors subjected to ISO fire condition. Journal of Structural Fire Engineering, 2(4), 301–310.CrossRef Zhao, B., & Roosefid, M. (2011). Experimental and numerical investigations of steel and concrete composite floors subjected to ISO fire condition. Journal of Structural Fire Engineering, 2(4), 301–310.CrossRef
99.
Zurück zum Zitat Bailey, C. G., & Toh, W. S. (2007). Behaviour of concrete floor slabs at ambient and elevated temperatures. Fire Safety Journal, 42(6–7), 425–436.CrossRef Bailey, C. G., & Toh, W. S. (2007). Behaviour of concrete floor slabs at ambient and elevated temperatures. Fire Safety Journal, 42(6–7), 425–436.CrossRef
100.
Zurück zum Zitat Vassart, O., Zhao, B. (2012). MACS+ for membrane action of composite structures in case of fire. Design guide. Vassart, O., Zhao, B. (2012). MACS+ for membrane action of composite structures in case of fire. Design guide.
101.
Zurück zum Zitat Clifton, G. C. (2006). “Design of composite steel floor systems for severe fires”, HERA Report R4-131, New Zealand HERA: Manukau City, Auckland, New Zealand. Clifton, G. C. (2006). “Design of composite steel floor systems for severe fires”, HERA Report R4-131, New Zealand HERA: Manukau City, Auckland, New Zealand.
102.
Zurück zum Zitat Lelli, L., & Loutan, J. (2018). Advanced analyses of the membrane action of composite slabs under natural fire scenarios: A case study of the JTI headquarters. Journal of Structural Fire Engineering, 9(1), 77–90.CrossRef Lelli, L., & Loutan, J. (2018). Advanced analyses of the membrane action of composite slabs under natural fire scenarios: A case study of the JTI headquarters. Journal of Structural Fire Engineering, 9(1), 77–90.CrossRef
103.
Zurück zum Zitat Bamonte, P., Gambarova, P. G., Kalaba, N., & Tattoni, S. (2018). Some considerations on shear and torsion in R/C structural members in fire. Journal of Structural Fire Engineering, 9(2), 94–107.CrossRef Bamonte, P., Gambarova, P. G., Kalaba, N., & Tattoni, S. (2018). Some considerations on shear and torsion in R/C structural members in fire. Journal of Structural Fire Engineering, 9(2), 94–107.CrossRef
104.
Zurück zum Zitat Bisby, L., Mostafaei, H., Pimienta, P. (2014). White Paper on Fire Resistance of Concrete Structures. US Department of Commerce, National Institute of Standards and Technology. Bisby, L., Mostafaei, H., Pimienta, P. (2014). White Paper on Fire Resistance of Concrete Structures. US Department of Commerce, National Institute of Standards and Technology.
105.
Zurück zum Zitat de Feijter, M. P., & Breunese, M. P. (2007). 2007-Efectis-R0894(E)—Investigation of fire in the Lloydstraat Car Park, Rotterdam. Efectis. de Feijter, M. P., & Breunese, M. P. (2007). 2007-Efectis-R0894(E)—Investigation of fire in the Lloydstraat Car Park, Rotterdam. Efectis.
106.
Zurück zum Zitat Bailey, C. G., & Lennon, T. (2008). Full scale fire tests on hollow core slabs. The Structural Engineer, 86(6), 33–39. Bailey, C. G., & Lennon, T. (2008). Full scale fire tests on hollow core slabs. The Structural Engineer, 86(6), 33–39.
107.
Zurück zum Zitat Smith, H. (2016). Punching shear of flat reinforced-concrete s labs under fire conditions. The University of Edinburgh, PhD thesis. Smith, H. (2016). Punching shear of flat reinforced-concrete s labs under fire conditions. The University of Edinburgh, PhD thesis.
108.
Zurück zum Zitat Muttoni, A., Furst, A. A., Hunkeler, F. (2005). Deckeneinsturzder Tiefgarageam Staldenacker in Gretzenbach, Solothurn, Switzerland, November, Medieninformation vom15.11.2005. Muttoni, A., Furst, A. A., Hunkeler, F. (2005). Deckeneinsturzder Tiefgarageam Staldenacker in Gretzenbach, Solothurn, Switzerland, November, Medieninformation vom15.11.2005.
109.
Zurück zum Zitat Kallerova, P., & Wald, F. (2009). Fire test on experimental building in Mokrsko. CTU. Kallerova, P., & Wald, F. (2009). Fire test on experimental building in Mokrsko. CTU.
110.
Zurück zum Zitat Kodur, V. K. R., & Agrawal, A. (2016). An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Engineering Structures, 110, 293–306.CrossRef Kodur, V. K. R., & Agrawal, A. (2016). An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Engineering Structures, 110, 293–306.CrossRef
111.
Zurück zum Zitat Gernay, T., & Franssen, J. M. (2015). A performance indicator for structures under natural fire. Engineering Structures, 100, 94–103.CrossRef Gernay, T., & Franssen, J. M. (2015). A performance indicator for structures under natural fire. Engineering Structures, 100, 94–103.CrossRef
112.
Zurück zum Zitat Gernay, T. (2012). Effect of transient creep strain model on the behavior of concrete columns subjected to heating and cooling. Fire Technology, 48(2), 313–329.CrossRef Gernay, T. (2012). Effect of transient creep strain model on the behavior of concrete columns subjected to heating and cooling. Fire Technology, 48(2), 313–329.CrossRef
113.
Zurück zum Zitat Law, A. Gillie, M. (2008) Load induced thermal strain: implications for structural behavior, in: Proceedings of the Fifth International Conference—Structures in Fire, SIF, Singapore, pp. 488–496. Law, A. Gillie, M. (2008) Load induced thermal strain: implications for structural behavior, in: Proceedings of the Fifth International Conference—Structures in Fire, SIF, Singapore, pp. 488–496.
114.
Zurück zum Zitat Molkens, T., Van Coile, R., & Gernay, T. (2017). Assessment of damage and residual load bearing capacity of a concrete slab after fire: Applied reliability-based methodology. Engineering Structures, 150, 969–985.CrossRef Molkens, T., Van Coile, R., & Gernay, T. (2017). Assessment of damage and residual load bearing capacity of a concrete slab after fire: Applied reliability-based methodology. Engineering Structures, 150, 969–985.CrossRef
115.
Zurück zum Zitat Van Coile, R., Caspeele, R., & Taerwe, L. (2014). Towards a reliability-based post-fire assessment method for concrete slabs incorporating data from inspection. Structural Concrete, 15(3), 395–407.CrossRef Van Coile, R., Caspeele, R., & Taerwe, L. (2014). Towards a reliability-based post-fire assessment method for concrete slabs incorporating data from inspection. Structural Concrete, 15(3), 395–407.CrossRef
Metadaten
Titel
Concrete Structures
verfasst von
Thomas Gernay
Venkatesh Kodur
Mohannad Z. Naser
Reza Imani
Luke Bisby
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-77123-2_6