Skip to main content
Erschienen in:

2021 | OriginalPaper | Buchkapitel

Concurrency Theorems for Non-linear Rewriting Theories

verfasst von : Nicolas Behr, Russ Harmer, Jean Krivine

Erschienen in: Graph Transformation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting “backpropagation effect” in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, we follow the conventions of compositional rewriting theory [9], i.e., we speak of “input”/“output” motifs of rules, as opposed to “left”/“right” motifs in the traditional literature [22].
 
2
Some authors prefer to not consider directly the category \(\mathbf {BRel}\), but rather define \(\mathbf {SGraph}\) as some category equivalent to \(\mathbf {BRel}\), where simple graphs are of the form \(\langle V,E\rangle \) with \(E\subseteq V\times V\). This is evidently equivalent to directly considering \(\mathbf {BRel}\), whence we chose to not make this distinction in this paper.
 
3
As demonstrated in [26, Fact 3.4], every finitary \(\mathcal {M}\)-adhesive category \(\mathbf{C}\) possesses an (extremal \(\mathcal {E}\), \(\mathcal {M}\))-factorization, so if \(\mathbf{C}\) is known to possess FPCs as required by the construction, this might allow to generalize the \(\mathcal {M}\)-FPC-PO-augmentation construction to this setting.
 
4
Note that square (1) pasted with the pullback square formed by the morphisms \(\overline{\alpha }, id_B,e,e\circ \bar{\alpha }\) yields a pullback square that is indeed of the right form to warrant the existence of a morphism n into the FPC square \((1)\,+\,(2)\).
 
5
Note that this part of the definition of general SqPO-semantics coincides precisely with the original definition of [17].
 
6
Note that we have drawn the rule from right to left so that the input, sometimes called the left-hand side, of the rule is the topmost rightmost graph. Note also that the structure of the homomorphisms may be inferred from the node positions, with the exception of the vertex clonings that are explicitly mentioned in the text.
 
Literatur
20.
Zurück zum Zitat Diers, Y.: Familles universelles de morphismes, Publications de l’U.E.R. mathématiques pures et appliquées, vol. 145. Université des sciences et techniques de Lille I (1978) Diers, Y.: Familles universelles de morphismes, Publications de l’U.E.R. mathématiques pures et appliquées, vol. 145. Université des sciences et techniques de Lille I (1978)
21.
Zurück zum Zitat Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)MathSciNetCrossRef Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)MathSciNetCrossRef
23.
Zurück zum Zitat Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transformation and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121 (2010)MathSciNetMATH Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transformation and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121 (2010)MathSciNetMATH
27.
Zurück zum Zitat Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories. TAC 27(3), 27–46 (2012)MathSciNetMATH Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories. TAC 27(3), 27–46 (2012)MathSciNetMATH
29.
Zurück zum Zitat Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies of graphs. JLAMP 114, 100559 (2020)MathSciNetMATH Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies of graphs. JLAMP 114, 100559 (2020)MathSciNetMATH
32.
Zurück zum Zitat Johnstone, P.T.: Sketches of an Elephant - A Topos Theory Compendium, vol. 1. Oxford University Press, Oxford (2002)MATH Johnstone, P.T.: Sketches of an Elephant - A Topos Theory Compendium, vol. 1. Oxford University Press, Oxford (2002)MATH
Metadaten
Titel
Concurrency Theorems for Non-linear Rewriting Theories
verfasst von
Nicolas Behr
Russ Harmer
Jean Krivine
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-78946-6_1