Skip to main content

2020 | OriginalPaper | Buchkapitel

Condition Monitoring of Coal Mine Using Ensemble Boosted Tree Regression Model

verfasst von : R. Uma Maheswari, S. Rajalingam, T. K. Senthilkumar

Erschienen in: Intelligent Communication Technologies and Virtual Mobile Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, Fires and explosion in coal mines imposes number of life threats for mine workers along with a rapid increase in environmental air pollution. By using various risk assessment methodologies, coal miners can easily predict the potential risks of forthcoming hazards in advance. In this work, a novel approach is proposed for monitoring the fire-resistant hydraulic fluids (HFA) contamination level. Fire resistance property of HFA fluids varies with the viscosity. Water content. By monitoring the water content in HFA fluids, fire resistance can be easily predicted. Fire resistance hydraulic fluid properties are trained in Ensemble Boosted Regression Tree (EBRT) to predict the potential risk in coal mines. EBRT is the supervised training algorithm which is proposed for leveraging an efficacious coal mine monitoring into existence. EBRT model estimates stronger prediction by linearly integrating the weaker estimations. Threshold rule-based decision making is adopted for the effective mitigation of risks. EBRT is optimized to minimize the cross-validation loss. Furthermore, Bayesian optimizer is used to minimize the objective function to 7.81 with regularized parameter lambda is chosen as 0.34 to minimize the ensemble trees. The root Mean square error is optimized to 31.68.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Dwuletzki, H., Pfaender, B., Niemczyk, K.: New fire-resistant hydraulic fluids type HFA for mining use – critical analysis. In: Dyczko, A.T., Jerzy Kicki, A., Myszkowski, M., Stopa, Z. (eds.) New Techniques and Technologies in Thin Coal Seam Exploitation, pp 201–209. CRC Press, BOGDANKA (2010)CrossRef Dwuletzki, H., Pfaender, B., Niemczyk, K.: New fire-resistant hydraulic fluids type HFA for mining use – critical analysis. In: Dyczko, A.T., Jerzy Kicki, A., Myszkowski, M., Stopa, Z. (eds.) New Techniques and Technologies in Thin Coal Seam Exploitation, pp 201–209. CRC Press, BOGDANKA (2010)CrossRef
Zurück zum Zitat Helwig, N., Schütze, A.: Data-based condition monitoring of a fluid power system with varying oil parameters. In: 10th International Fluid Power Conference (IFK2016), pp. 425–436 (2016) Helwig, N., Schütze, A.: Data-based condition monitoring of a fluid power system with varying oil parameters. In: 10th International Fluid Power Conference (IFK2016), pp. 425–436 (2016)
Zurück zum Zitat Kozielski, Stanisaw, Dariusz Mrozek, Pawe Kasprowski, Boena Maysiak-Mrozek, and Daniel Kostrzewa. 2015. “Regression Rule Learning for Methane Forecasting in Coal Mines.” In Beyond Databases, Architectures and Structures: 11th International Conference, BDAS 2015 Ustro, Poland, May 26 –29, 2015 Proceedings Communications in Computer and Information Science, 521:495–504. https://doi.org/10.1007/978-3-319-18422-7 Kozielski, Stanisaw, Dariusz Mrozek, Pawe Kasprowski, Boena Maysiak-Mrozek, and Daniel Kostrzewa. 2015. “Regression Rule Learning for Methane Forecasting in Coal Mines.” In Beyond Databases, Architectures and Structures: 11th International Conference, BDAS 2015 Ustro, Poland, May 26 –29, 2015 Proceedings Communications in Computer and Information Science, 521:495–504. https://​doi.​org/​10.​1007/​978-3-319-18422-7
Zurück zum Zitat Li, H., Xu, H., Wang, J., Fu, X., Bai, Z.: Design of automatic control system of coal sampling robot hydraulic system oil temperature. In: Proceedings - 9th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2017, vol. 1, pp. 38–42 (2017). https://doi.org/10.1109/IHMSC.2017.16 Li, H., Xu, H., Wang, J., Fu, X., Bai, Z.: Design of automatic control system of coal sampling robot hydraulic system oil temperature. In: Proceedings - 9th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2017, vol. 1, pp. 38–42 (2017). https://​doi.​org/​10.​1109/​IHMSC.​2017.​16
Zurück zum Zitat Peter, Hodges: Hydraulic Fluids, 1st edn. Wiley, New York (2004) Peter, Hodges: Hydraulic Fluids, 1st edn. Wiley, New York (2004)
Zurück zum Zitat Prevention of Fres in Underground Mines — Guideline: Resources Safety. Western Australia (2013). https://doi.org/ISBN978192116316 9 Prevention of Fres in Underground Mines — Guideline: Resources Safety. Western Australia (2013). https://​doi.​org/​ISBN978192116316​ 9
Zurück zum Zitat Shen, Z., Dong, H., Yao, N., Li, X.: Condition Monitoring and Fault Diagnosis System of Fully Hydraulic Drilling in Coal Mine (2016) Shen, Z., Dong, H., Yao, N., Li, X.: Condition Monitoring and Fault Diagnosis System of Fully Hydraulic Drilling in Coal Mine (2016)
Zurück zum Zitat Givens, W.A., Michael, P.W.: Hydraulic fluids. In: Totten, G.E., Westbrook, S.R., Shah, R.J. (eds.) Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing 225. ASTM International (2003). https://doi.org/10.1520/MNL37WCD-EB Givens, W.A., Michael, P.W.: Hydraulic fluids. In: Totten, G.E., Westbrook, S.R., Shah, R.J. (eds.) Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing 225. ASTM International (2003). https://​doi.​org/​10.​1520/​MNL37WCD-EB
Metadaten
Titel
Condition Monitoring of Coal Mine Using Ensemble Boosted Tree Regression Model
verfasst von
R. Uma Maheswari
S. Rajalingam
T. K. Senthilkumar
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_2