Skip to main content
Erschienen in: Journal of Materials Science 19/2017

31.05.2017 | Macroporous Materials

Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates

verfasst von: Flor Canencia, Margarita Darder, Pilar Aranda, Francisco M. Fernandes, Rubia Figueredo Gouveia, Eduardo Ruiz-Hitzky

Erschienen in: Journal of Materials Science | Ausgabe 19/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current work reports the preparation of macroporous carbon/silica foams using sucrose as precursor in the presence of silica gel and water. After a preliminary fast transformation of sucrose into caramel by MW irradiation, the carbon/silica materials are obtained by thermal treatment at 800 °C under nitrogen atmosphere. In contrast to carbon/clay materials prepared by the same synthetic route, the use of microporous silica gel as inorganic support for the chemical transformation of sucrose gives rise to foam-like materials without requiring the addition of blowing agents. The resulting materials are low-density monoliths (0.17 g cm−3) that show several populations of macropores centered at 150 and in the range of 30–5 µm, as well as mesopores around 5–6 nm. The porosity is close to 97%, as determined from helium pycnometry, which gave a skeletal density value of 6.08 g cm−3. The resulting foams show electrical conductivity values around 3 mS cm−1 due to the generated graphene-like materials, as corroborated by Raman spectroscopy. A preliminary evaluation of these macroporous materials as adsorbents of aromatic pollutants was carried out using methylene blue (MB) as a model dye. The regeneration of the MB-loaded foams to make possible their application in successive adsorption cycles was assessed by solid–liquid extraction and electrochemical regeneration. In both cases, the treatment produced an increase in the uptake capacity, which could be due to an increment in porosity and specific surface area, from 360 to 440 m2 g−1, as determined from mercury porosimetry and N2 adsorption measurements. In addition, the electrochemical method allowed a partial degradation of the pollutant, as determined by UV–Vis and HPLC–MS. Thus, the carbon/silica materials here developed are promising adsorbents for treatment of polluted effluents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Inagaki M, Kang F, Toyoda M, Konno H (2014) Carbon materials for adsorption of molecules and ions. In: Advanced materials science and engineering of carbon. Butterworth-Heinemann, Boston, pp 335–361CrossRef Inagaki M, Kang F, Toyoda M, Konno H (2014) Carbon materials for adsorption of molecules and ions. In: Advanced materials science and engineering of carbon. Butterworth-Heinemann, Boston, pp 335–361CrossRef
2.
Zurück zum Zitat Niu Z, Liu L, Zhang L, Chen X (2014) Porous graphene materials for water remediation. Small 10:3434–3441CrossRef Niu Z, Liu L, Zhang L, Chen X (2014) Porous graphene materials for water remediation. Small 10:3434–3441CrossRef
3.
Zurück zum Zitat Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368CrossRef Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368CrossRef
4.
Zurück zum Zitat Kemp KC, Seema H, Saleh M et al (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:3149–3171CrossRef Kemp KC, Seema H, Saleh M et al (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:3149–3171CrossRef
5.
Zurück zum Zitat Ruiz-Garcia C, Darder M, Aranda P, Ruiz-Hitzky E (2014) Toward a green way for the chemical production of supported graphenes using porous solids. J Mater Chem A 2:2009–2017CrossRef Ruiz-Garcia C, Darder M, Aranda P, Ruiz-Hitzky E (2014) Toward a green way for the chemical production of supported graphenes using porous solids. J Mater Chem A 2:2009–2017CrossRef
6.
Zurück zum Zitat Ruiz-Hitzky E, Darder M, Fernandes FM, Zatile E, Palomares FJ, Aranda P (2011) Supported graphene from natural resources: easy preparation and applications. Adv Mater 23:5250–5255CrossRef Ruiz-Hitzky E, Darder M, Fernandes FM, Zatile E, Palomares FJ, Aranda P (2011) Supported graphene from natural resources: easy preparation and applications. Adv Mater 23:5250–5255CrossRef
7.
Zurück zum Zitat Bakandritsos A, Kouvelos E, Steriotis T, Petridis D (2005) Aqueous and gaseous adsorption from montmorillonite-carbon composites and from derived carbons. Langmuir 21:2349–2355CrossRef Bakandritsos A, Kouvelos E, Steriotis T, Petridis D (2005) Aqueous and gaseous adsorption from montmorillonite-carbon composites and from derived carbons. Langmuir 21:2349–2355CrossRef
9.
Zurück zum Zitat Gupta SS, Sreeprasad TS, Maliyekkal SM, Das SK, Pradeep T (2012) Graphene from sugar and its application in water purification. ACS Appl Mater Interfaces 4:4156–4163CrossRef Gupta SS, Sreeprasad TS, Maliyekkal SM, Das SK, Pradeep T (2012) Graphene from sugar and its application in water purification. ACS Appl Mater Interfaces 4:4156–4163CrossRef
10.
Zurück zum Zitat BeMiller JN, Whistler RL (1996) In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York BeMiller JN, Whistler RL (1996) In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York
11.
Zurück zum Zitat Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2007) Functionalized carbon-silicates from caramel-sepiolite nanocomposites. Angew Chem Int Ed 46:923–925CrossRef Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2007) Functionalized carbon-silicates from caramel-sepiolite nanocomposites. Angew Chem Int Ed 46:923–925CrossRef
12.
Zurück zum Zitat Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2010) Multifunctional materials based on graphene-like/sepiolite nanocomposites. Appl Clay Sci 47:203–211CrossRef Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2010) Multifunctional materials based on graphene-like/sepiolite nanocomposites. Appl Clay Sci 47:203–211CrossRef
13.
Zurück zum Zitat Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon 87:128–152CrossRef Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon 87:128–152CrossRef
14.
Zurück zum Zitat Inagaki M, Kang F, Toyoda M, Konno H (2014) Carbon foams. In: Advanced materials science and engineering of carbon. Butterworth-Heinemann, Boston, pp 189–214CrossRef Inagaki M, Kang F, Toyoda M, Konno H (2014) Carbon foams. In: Advanced materials science and engineering of carbon. Butterworth-Heinemann, Boston, pp 189–214CrossRef
16.
Zurück zum Zitat Vijayan S, Narasimman R, Prudvi C, Prabhakaran K (2014) Preparation of alumina foams by the thermo-foaming of powder dispersions in molten sucrose. J Eur Ceram Soc 34:425–433CrossRef Vijayan S, Narasimman R, Prudvi C, Prabhakaran K (2014) Preparation of alumina foams by the thermo-foaming of powder dispersions in molten sucrose. J Eur Ceram Soc 34:425–433CrossRef
17.
Zurück zum Zitat Narasimman R, Vijayan S, Prabhakaran K (2014) Carbon particle induced foaming of molten sucrose for the preparation of carbon foams. Mater Sci Eng B-Adv Funct Solid-State Mater 189:82–89CrossRef Narasimman R, Vijayan S, Prabhakaran K (2014) Carbon particle induced foaming of molten sucrose for the preparation of carbon foams. Mater Sci Eng B-Adv Funct Solid-State Mater 189:82–89CrossRef
18.
Zurück zum Zitat Jana P, Fierro V, Celzard A (2016) Sucrose-based carbon foams with enhanced thermal conductivity. Ind Crop Prod 89:498–506CrossRef Jana P, Fierro V, Celzard A (2016) Sucrose-based carbon foams with enhanced thermal conductivity. Ind Crop Prod 89:498–506CrossRef
20.
Zurück zum Zitat Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B-Environ 87:105–145CrossRef Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B-Environ 87:105–145CrossRef
21.
Zurück zum Zitat Omorogie MO, Babalola JO, Unuabonah EI (2016) Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review. Desalin Water Treat 57:518–544CrossRef Omorogie MO, Babalola JO, Unuabonah EI (2016) Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review. Desalin Water Treat 57:518–544CrossRef
22.
Zurück zum Zitat Weng C-H, Hsu M-C (2008) Regeneration of granular activated carbon by an electrochemical process. Sep Purif Technol 64:227–236CrossRef Weng C-H, Hsu M-C (2008) Regeneration of granular activated carbon by an electrochemical process. Sep Purif Technol 64:227–236CrossRef
23.
Zurück zum Zitat García-Otón M, Montilla F, Lillo-Ródenas MA, Morallón E, Vázquez JL (2005) Electrochemical regeneration of activated carbon saturated with toluene. J Appl Electrochem 35:319–325CrossRef García-Otón M, Montilla F, Lillo-Ródenas MA, Morallón E, Vázquez JL (2005) Electrochemical regeneration of activated carbon saturated with toluene. J Appl Electrochem 35:319–325CrossRef
24.
Zurück zum Zitat Hussain SN, Asghar HMA, Campen AK, Brown NW, Roberts EPL (2013) Breakdown products formed due to oxidation of adsorbed phenol by electrochemical regeneration of a graphite adsorbent. Electrochim Acta 110:550–559CrossRef Hussain SN, Asghar HMA, Campen AK, Brown NW, Roberts EPL (2013) Breakdown products formed due to oxidation of adsorbed phenol by electrochemical regeneration of a graphite adsorbent. Electrochim Acta 110:550–559CrossRef
25.
Zurück zum Zitat Liu D, Roberts EPL, Martin AD et al (2016) Electrochemical regeneration of a graphite adsorbent loaded with Acid Violet 17 in a spouted bed reactor. Chem Eng J 304:1–9CrossRef Liu D, Roberts EPL, Martin AD et al (2016) Electrochemical regeneration of a graphite adsorbent loaded with Acid Violet 17 in a spouted bed reactor. Chem Eng J 304:1–9CrossRef
26.
Zurück zum Zitat Caja Muñoz B (2015) Master Degree dissertation, Universidad Autónoma de Madrid-Universidad Rey Juan Carlos, Madrid Caja Muñoz B (2015) Master Degree dissertation, Universidad Autónoma de Madrid-Universidad Rey Juan Carlos, Madrid
27.
Zurück zum Zitat Valle Torrijos S (2010) Master Degree dissertation, Universidad Carlos III de Madrid, Leganés Valle Torrijos S (2010) Master Degree dissertation, Universidad Carlos III de Madrid, Leganés
28.
Zurück zum Zitat Lee H, Rajagopalan R, Robinson J, Pantano CG (2009) Processing and characterization of ultrathin carbon coatings on glass. ACS Appl Mater Interfaces 1:927–933CrossRef Lee H, Rajagopalan R, Robinson J, Pantano CG (2009) Processing and characterization of ultrathin carbon coatings on glass. ACS Appl Mater Interfaces 1:927–933CrossRef
29.
Zurück zum Zitat Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (unpublished results) Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (unpublished results)
31.
Zurück zum Zitat Villanueva A, Morales-Varela MC, Ruiz-Hitzky E (2004) Microwave-assisted synthesis of MPS3 materials (M = Mn, Cd) using a Dewar-ampoule device. Eur J Inorg Chem 2004:949–952CrossRef Villanueva A, Morales-Varela MC, Ruiz-Hitzky E (2004) Microwave-assisted synthesis of MPS3 materials (M = Mn, Cd) using a Dewar-ampoule device. Eur J Inorg Chem 2004:949–952CrossRef
32.
Zurück zum Zitat Vanderkaaden A, Haverkamp J, Boon JJ, Deleeuw JW (1983) Analytical pyrolysis of carbohydrates.1. Chemical interpretation of matrix influences on pyrolysis-mass spectra of amylose using pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrol 5:199–220CrossRef Vanderkaaden A, Haverkamp J, Boon JJ, Deleeuw JW (1983) Analytical pyrolysis of carbohydrates.1. Chemical interpretation of matrix influences on pyrolysis-mass spectra of amylose using pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrol 5:199–220CrossRef
33.
Zurück zum Zitat Walter RH, Fagerson IS (1968) Volatile compounds from heated glucose. J Food Sci 33:294–297CrossRef Walter RH, Fagerson IS (1968) Volatile compounds from heated glucose. J Food Sci 33:294–297CrossRef
34.
Zurück zum Zitat Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–291CrossRef Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–291CrossRef
35.
Zurück zum Zitat Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRef Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRef
36.
Zurück zum Zitat Adamčíková L, Pavlíková K, Ševčík P (2000) The decay of methylene blue in alkaline solution. React Kinet Catal L 69:91–94CrossRef Adamčíková L, Pavlíková K, Ševčík P (2000) The decay of methylene blue in alkaline solution. React Kinet Catal L 69:91–94CrossRef
37.
Zurück zum Zitat Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2010) Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 48:2734–2745CrossRef Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2010) Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 48:2734–2745CrossRef
38.
Zurück zum Zitat Riyanto MM (2015) Electrochemical degradation of methylen blue using carbon composite electrode (C-PVC) in sodium chloride. IOSR J Appl Chem 8:31–40 Riyanto MM (2015) Electrochemical degradation of methylen blue using carbon composite electrode (C-PVC) in sodium chloride. IOSR J Appl Chem 8:31–40
39.
Zurück zum Zitat Iler RK (1979) The chemistry of silica. Wiley, New York Iler RK (1979) The chemistry of silica. Wiley, New York
40.
Zurück zum Zitat Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Principles methodology and applications. Academic Press, London Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Principles methodology and applications. Academic Press, London
Metadaten
Titel
Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates
verfasst von
Flor Canencia
Margarita Darder
Pilar Aranda
Francisco M. Fernandes
Rubia Figueredo Gouveia
Eduardo Ruiz-Hitzky
Publikationsdatum
31.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1227-y

Weitere Artikel der Ausgabe 19/2017

Journal of Materials Science 19/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.