Skip to main content

2016 | OriginalPaper | Buchkapitel

15. Conducting Polymers as EAPs: Physical Description and Simulation

verfasst von : Meisam Farajollahi, Gursel Alici, Mirza Saquib Sarwar, John D. W. Madden

Erschienen in: Electromechanically Active Polymers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conducting polymer actuators and sensors employ the coupling between electrochemistry and mechanics. The aim of this chapter is to equip the reader with the basic models needed in order to assess the feasibility of using conducting polymers, design devices, describe the device response, and predict behavior. The chapter begins with an overview of the basic observations and phenomena on which physical models are based, briefly describes models employed, and gives some references to literature presenting the models. The use of system identification techniques is then presented, and it is shown that these can very effectively be employed to create and validate models, as well as extract physical phenomena and enable predictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alici G et al (2008) Response characterization of electroactive polymers as mechanical sensors. IEEE/ASME Trans Mechatron 13(2):187–196CrossRef Alici G et al (2008) Response characterization of electroactive polymers as mechanical sensors. IEEE/ASME Trans Mechatron 13(2):187–196CrossRef
Zurück zum Zitat Arias-Pardilla J et al (2011) Self-supported semi-interpenetrating polymer networks as reactive ambient sensors. J Electroanal Chem 652(1-2):37–43CrossRef Arias-Pardilla J et al (2011) Self-supported semi-interpenetrating polymer networks as reactive ambient sensors. J Electroanal Chem 652(1-2):37–43CrossRef
Zurück zum Zitat Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A Physicochem Eng Asp 270-271:226–231CrossRef Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A Physicochem Eng Asp 270-271:226–231CrossRef
Zurück zum Zitat Bahrami-Samani M et al (2008) Quartz crystal microbalance study of volume changes and modulus shift in electrochemically switched polypyrrole. Thin Solid Films 516(9):2800–2807CrossRef Bahrami-Samani M et al (2008) Quartz crystal microbalance study of volume changes and modulus shift in electrochemically switched polypyrrole. Thin Solid Films 516(9):2800–2807CrossRef
Zurück zum Zitat Baughman RH et al (1991) Electromechanical actuators based on conducting polymers. In: Molecular electronics. Kluwer, Dordrecht, pp 267–289CrossRef Baughman RH et al (1991) Electromechanical actuators based on conducting polymers. In: Molecular electronics. Kluwer, Dordrecht, pp 267–289CrossRef
Zurück zum Zitat Cole M, Madden JD (2005) The effect of temperature on polypyrrole actuation. MRS, Boston, pp 105–110 Cole M, Madden JD (2005) The effect of temperature on polypyrrole actuation. MRS, Boston, pp 105–110
Zurück zum Zitat Della Santa A et al (1996) Conducting polymer electromechanics: a continuum model of passive mechanical properties. In: Third ICIM/ECSSM. pp 371–376 Della Santa A et al (1996) Conducting polymer electromechanics: a continuum model of passive mechanical properties. In: Third ICIM/ECSSM. pp 371–376
Zurück zum Zitat Della Santa A, DeRossi D, Mazzoldi A (1997) Characterization and modeling of a conducting polymer muscle-like linear actuator. Smart Mater Struct 6:23–34CrossRef Della Santa A, DeRossi D, Mazzoldi A (1997) Characterization and modeling of a conducting polymer muscle-like linear actuator. Smart Mater Struct 6:23–34CrossRef
Zurück zum Zitat Ehrenbeck C, Juttner K (1996) Ion conductivity and permselectivity measurements of polypyrrole membranes at variable states of oxidation. Electrochim Acta 41(11):1815–1823CrossRef Ehrenbeck C, Juttner K (1996) Ion conductivity and permselectivity measurements of polypyrrole membranes at variable states of oxidation. Electrochim Acta 41(11):1815–1823CrossRef
Zurück zum Zitat Fang Y, Tan X, Shen Y et al (2008a) A scalable model for trilayer conjugated polymer actuators and its experimental validation. Mater Sci Eng C 28(3):421–428CrossRef Fang Y, Tan X, Shen Y et al (2008a) A scalable model for trilayer conjugated polymer actuators and its experimental validation. Mater Sci Eng C 28(3):421–428CrossRef
Zurück zum Zitat Fang Y, Tan X, Alici G (2008b) Robust adaptive control of conjugated polymer actuators. IEEE Trans Contr Syst Technol 16(4):600–612CrossRef Fang Y, Tan X, Alici G (2008b) Robust adaptive control of conjugated polymer actuators. IEEE Trans Contr Syst Technol 16(4):600–612CrossRef
Zurück zum Zitat Farajollahi M et al (2015) Non-linear two-dimensional transmission line models for electrochemically driven conducting polymer actuators. IEEE/ASME Transactions on Mechatronics, Vol. 21, 2016 Farajollahi M et al (2015) Non-linear two-dimensional transmission line models for electrochemically driven conducting polymer actuators. IEEE/ASME Transactions on Mechatronics, Vol. 21, 2016
Zurück zum Zitat Fekri N (2011) Influence of porosity on charging speed of polypyrrole supercapacitors. UBC, Vancouver, BC, Canada Fekri N (2011) Influence of porosity on charging speed of polypyrrole supercapacitors. UBC, Vancouver, BC, Canada
Zurück zum Zitat Fekri N et al (2014) Influence of porosity on charging speed of polypyrrole. Synth Met 187:145–151CrossRef Fekri N et al (2014) Influence of porosity on charging speed of polypyrrole. Synth Met 187:145–151CrossRef
Zurück zum Zitat Hara S et al (2004) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36(11):933–936CrossRef Hara S et al (2004) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36(11):933–936CrossRef
Zurück zum Zitat Herod TE, Schlenoff JB (1993) Doping induced strain in polyaniline: stretchoelectrochemistry. Chem Mater 5:951–955CrossRef Herod TE, Schlenoff JB (1993) Doping induced strain in polyaniline: stretchoelectrochemistry. Chem Mater 5:951–955CrossRef
Zurück zum Zitat Izadi-Najafabadi A (2006) Carbon nanotube and polypyrrole supercapacitors. UBC, Vancouver, BC, Canada Izadi-Najafabadi A (2006) Carbon nanotube and polypyrrole supercapacitors. UBC, Vancouver, BC, Canada
Zurück zum Zitat Johansson R (2003) System modeling and identification. Prentice Hall, Englewood Cliffs, New Jersey Johansson R (2003) System modeling and identification. Prentice Hall, Englewood Cliffs, New Jersey
Zurück zum Zitat John S, Alici G, Spinks G et al (2008a) Sensor response of polypyrrole trilayer benders as a function of geometry. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices. SPIE conference, San Diego, CA, USA, pp 692721–1–692721–9 John S, Alici G, Spinks G et al (2008a) Sensor response of polypyrrole trilayer benders as a function of geometry. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices. SPIE conference, San Diego, CA, USA, pp 692721–1–692721–9
Zurück zum Zitat John S, Alici G, Cook C (2008b) Frequency response of polypyrrole trilayer actuator displacement. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices. SPIE conference, San Diego, CA, USA, pp 69271T–69271T–8 John S, Alici G, Cook C (2008b) Frequency response of polypyrrole trilayer actuator displacement. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices. SPIE conference, San Diego, CA, USA, pp 69271T–69271T–8
Zurück zum Zitat John SW, Alici G, Cook CD (2008c) Validation of resonant frequency model for polypyrrole trilayer actuators. IEEE/ASME Trans Mechatron 13(4):401–409 John SW, Alici G, Cook CD (2008c) Validation of resonant frequency model for polypyrrole trilayer actuators. IEEE/ASME Trans Mechatron 13(4):401–409
Zurück zum Zitat John SW et al (2009) Towards fully optimized conducting polymer bending sensors: the effect of geometry. Smart Mater Struct 18(8):1–8CrossRef John SW et al (2009) Towards fully optimized conducting polymer bending sensors: the effect of geometry. Smart Mater Struct 18(8):1–8CrossRef
Zurück zum Zitat John SW, Alici G, Cook CD (2010) Inversion-based feedforward control of polypyrrole trilayer bender actuators. IEEE/ASME Trans Mechatron 15(1):149–156CrossRef John SW, Alici G, Cook CD (2010) Inversion-based feedforward control of polypyrrole trilayer bender actuators. IEEE/ASME Trans Mechatron 15(1):149–156CrossRef
Zurück zum Zitat Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546CrossRef Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546CrossRef
Zurück zum Zitat Kaneko M et al (1997) Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synth Met 84:795–796CrossRef Kaneko M et al (1997) Electrolyte and strain dependences of chemomechanical deformation of polyaniline film. Synth Met 84:795–796CrossRef
Zurück zum Zitat Khalili N, Naguib HE, Kwon RH (2015) Transmission line circuit model of a PPy based trilayer mechanical sensor. In: SPIE conference on electroactive polymer actuators. pp 94302E1–94302E–9 Khalili N, Naguib HE, Kwon RH (2015) Transmission line circuit model of a PPy based trilayer mechanical sensor. In: SPIE conference on electroactive polymer actuators. pp 94302E1–94302E–9
Zurück zum Zitat Kohlman RS, Epstein AJ (1998) Insulator-metal transition and inhomogeneous metallic state in conducting polymers. In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of conducting polymers. Marcel Dekker, New York, pp 85–122 Kohlman RS, Epstein AJ (1998) Insulator-metal transition and inhomogeneous metallic state in conducting polymers. In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of conducting polymers. Marcel Dekker, New York, pp 85–122
Zurück zum Zitat Ljung L (1999) System identification- theory for the user second. Prentice Hall, Englewood Cliffs, New Jersey Ljung L (1999) System identification- theory for the user second. Prentice Hall, Englewood Cliffs, New Jersey
Zurück zum Zitat López Cascales JJ, Otero TF (2004) Molecular dynamic simulation of the hydration and diffusion of chloride ions from bulk water to polypyrrole matrix. J Chem Phys 120(4):1951–1957CrossRef López Cascales JJ, Otero TF (2004) Molecular dynamic simulation of the hydration and diffusion of chloride ions from bulk water to polypyrrole matrix. J Chem Phys 120(4):1951–1957CrossRef
Zurück zum Zitat Madden JDW (2000) Conducting polymer actuators. MIT, Cambridge, MA, USA Madden JDW (2000) Conducting polymer actuators. MIT, Cambridge, MA, USA
Zurück zum Zitat Madden PGA (2003) Development and modeling of conducting polymer actuators and demonstration of a conducting polymer-based feedback loop. MIT, Cambridge, MA, USA Madden PGA (2003) Development and modeling of conducting polymer actuators and demonstration of a conducting polymer-based feedback loop. MIT, Cambridge, MA, USA
Zurück zum Zitat Madden JDW, Madden PGA, Hunter IW (2001) Polypyrrole actuators: modeling and performance. SPIE 4329:72–83 Madden JDW, Madden PGA, Hunter IW (2001) Polypyrrole actuators: modeling and performance. SPIE 4329:72–83
Zurück zum Zitat Madden JD et al (2002a) Load and time dependence of displacement in a conducting polymer actuator. Mater Res Soc Proc 698(EE4.3):137–144 Madden JD et al (2002a) Load and time dependence of displacement in a conducting polymer actuator. Mater Res Soc Proc 698(EE4.3):137–144
Zurück zum Zitat Madden JDW, Madden PG, Hunter IW (2002b) Conducting polymer actuators as engineering materials. In: Bar-Cohen Y (ed) SPIE conference on electroactive polymer actuators, vol 4695. SPIE conference, San Diego, CA, USA, pp 176–190 Madden JDW, Madden PG, Hunter IW (2002b) Conducting polymer actuators as engineering materials. In: Bar-Cohen Y (ed) SPIE conference on electroactive polymer actuators, vol 4695. SPIE conference, San Diego, CA, USA, pp 176–190
Zurück zum Zitat Madden JDW et al (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A 133(1):210–217CrossRef Madden JDW et al (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A 133(1):210–217CrossRef
Zurück zum Zitat Maziz A et al (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24(30):4851–4859CrossRef Maziz A et al (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24(30):4851–4859CrossRef
Zurück zum Zitat Mazzoldi A, Della Santa A, De Rossi D (1999) Conducting polymer actuators: properties and modeling. In: Polymer sensors and actuators. Osada Y, De Rossi DE (eds). Springer, Heidelberg Mazzoldi A, Della Santa A, De Rossi D (1999) Conducting polymer actuators: properties and modeling. In: Polymer sensors and actuators. Osada Y, De Rossi DE (eds). Springer, Heidelberg
Zurück zum Zitat Metz P, Alici G, Spinks GM (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sens Actuators A 130-131:1–11CrossRef Metz P, Alici G, Spinks GM (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sens Actuators A 130-131:1–11CrossRef
Zurück zum Zitat Nguyen CH, Alici G, Wallace GG (2012) Modeling trilayer conjugated polymer actuators for their sensorless position control. Sens Actuators A 185:82–91CrossRef Nguyen CH, Alici G, Wallace GG (2012) Modeling trilayer conjugated polymer actuators for their sensorless position control. Sens Actuators A 185:82–91CrossRef
Zurück zum Zitat Nguyen CH, Alici G, Wallace G (2014) An advanced mathematical model and its experimental verification for trilayer conjugated polymer actuators. IEEE/ASME Trans Mechatron 19(4):1279–1288CrossRef Nguyen CH, Alici G, Wallace G (2014) An advanced mathematical model and its experimental verification for trilayer conjugated polymer actuators. IEEE/ASME Trans Mechatron 19(4):1279–1288CrossRef
Zurück zum Zitat Nogami Y, Pouget J-P, Ishiguro T (1994) Structure of highly conducting PF6–doped polypyrrole. Synth Met 62:257–263CrossRef Nogami Y, Pouget J-P, Ishiguro T (1994) Structure of highly conducting PF6–doped polypyrrole. Synth Met 62:257–263CrossRef
Zurück zum Zitat Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRef Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRef
Zurück zum Zitat Otero TF (2008) Reactive conducting polymers as actuating sensors and tactile muscles. Bioinspir Biomim 3(3):1–9 Otero TF (2008) Reactive conducting polymers as actuating sensors and tactile muscles. Bioinspir Biomim 3(3):1–9
Zurück zum Zitat Otero TF, Cortés MT (2003) A sensing muscle. Sens Actuators B 96(1-2):152–156CrossRef Otero TF, Cortés MT (2003) A sensing muscle. Sens Actuators B 96(1-2):152–156CrossRef
Zurück zum Zitat Otero TF, Padilla J (2004) Anodic shrinking and compaction of polypyrrole blend: electrochemical reduction under conformational relaxation kinetic control. J Electroanal Chem 561:167–171CrossRef Otero TF, Padilla J (2004) Anodic shrinking and compaction of polypyrrole blend: electrochemical reduction under conformational relaxation kinetic control. J Electroanal Chem 561:167–171CrossRef
Zurück zum Zitat Pei Q, Inganas O (1992) Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514CrossRef Pei Q, Inganas O (1992) Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514CrossRef
Zurück zum Zitat Pei Q, Inganas O (1993) Electrochemical applications of the bending beam method; a novel way to study ion transport in electroactive polymers. Solid State Ion 60:161–166CrossRef Pei Q, Inganas O (1993) Electrochemical applications of the bending beam method; a novel way to study ion transport in electroactive polymers. Solid State Ion 60:161–166CrossRef
Zurück zum Zitat Pytel RZ (2007) Artificial muscle morphology: structure/property relationships in polypyrrole actuators. MIT, Cambridge, MA, USA Pytel RZ (2007) Artificial muscle morphology: structure/property relationships in polypyrrole actuators. MIT, Cambridge, MA, USA
Zurück zum Zitat Pytel RZ, Thomas EH, Hunter IW (2006) Anisotropy of electroactive strain in highly stretched polypyrrole actuators. Chem Mater 18(4):861–863CrossRef Pytel RZ, Thomas EH, Hunter IW (2006) Anisotropy of electroactive strain in highly stretched polypyrrole actuators. Chem Mater 18(4):861–863CrossRef
Zurück zum Zitat Shoa T et al (2007) Polypyrrole operating voltage limits in aqueous sodium hexafluorophosphate. Proc SPIE 6524:652421–652421–8 Shoa T et al (2007) Polypyrrole operating voltage limits in aqueous sodium hexafluorophosphate. Proc SPIE 6524:652421–652421–8
Zurück zum Zitat Shoa T et al (2008) Rate limits in conducting polymers. Adv Sci Technol 61:26–33CrossRef Shoa T et al (2008) Rate limits in conducting polymers. Adv Sci Technol 61:26–33CrossRef
Zurück zum Zitat Shoa T et al (2010a) Analytical modeling of a conducting polymer‐driven catheter. Polym Int 59(3):343–351CrossRef Shoa T et al (2010a) Analytical modeling of a conducting polymer‐driven catheter. Polym Int 59(3):343–351CrossRef
Zurück zum Zitat Shoa T, Madden JDW et al (2010b) Electromechanical coupling in polypyrrole sensors and actuators. Sens Actuators A 161(1-2):127–133CrossRef Shoa T, Madden JDW et al (2010b) Electromechanical coupling in polypyrrole sensors and actuators. Sens Actuators A 161(1-2):127–133CrossRef
Zurück zum Zitat Shoa T, Mirfakhrai T, Madden JDW (2010c) Electro-stiffening in polypyrrole films: dependence of young’s modulus on oxidation state, load and frequency. Synth Met 160(11-12):1280–1286CrossRef Shoa T, Mirfakhrai T, Madden JDW (2010c) Electro-stiffening in polypyrrole films: dependence of young’s modulus on oxidation state, load and frequency. Synth Met 160(11-12):1280–1286CrossRef
Zurück zum Zitat Shoa T et al (2011) A dynamic electromechanical model for electrochemically driven conducting polymer actuators. IEEE/ASME Trans Mechatron 16(1):42–49CrossRef Shoa T et al (2011) A dynamic electromechanical model for electrochemically driven conducting polymer actuators. IEEE/ASME Trans Mechatron 16(1):42–49CrossRef
Zurück zum Zitat Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York
Zurück zum Zitat Smela BE, Gadegaard N (1999) Surprising volume change in PPy (DBS): an atomic force microscopy study. Adv Mater 11(11):953–957CrossRef Smela BE, Gadegaard N (1999) Surprising volume change in PPy (DBS): an atomic force microscopy study. Adv Mater 11(11):953–957CrossRef
Zurück zum Zitat Smela E, Lu W, Mattes BR (2005) Polyaniline actuators part 1: PANI(AMPS) in HCl. Synth Met 151:25–42CrossRef Smela E, Lu W, Mattes BR (2005) Polyaniline actuators part 1: PANI(AMPS) in HCl. Synth Met 151:25–42CrossRef
Zurück zum Zitat Spinks GM et al (2002) Strain response from polypyrrole actuators under load. Adv Funct Mater 12(6-7):437–440CrossRef Spinks GM et al (2002) Strain response from polypyrrole actuators under load. Adv Funct Mater 12(6-7):437–440CrossRef
Zurück zum Zitat Spinks GM et al (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18(5):637–640CrossRef Spinks GM et al (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18(5):637–640CrossRef
Zurück zum Zitat Takashima W et al (1997) Mechanochemoelectrical effect of polyaniline. Synth Met 85:1395–1396CrossRef Takashima W et al (1997) Mechanochemoelectrical effect of polyaniline. Synth Met 85:1395–1396CrossRef
Zurück zum Zitat Takashima W, Hayasi K, Kaneto K (2007) Force detection with Donnan equilibrium in polypyrrole film. Electrochem Commun 9(8):2056–2061CrossRef Takashima W, Hayasi K, Kaneto K (2007) Force detection with Donnan equilibrium in polypyrrole film. Electrochem Commun 9(8):2056–2061CrossRef
Zurück zum Zitat Tezuka Y (1997) Concentration profiles of conducting species in polypyrrole films in cyclic voltammetry by means of a diode array detector. J Electroanal Chem 425:167–172CrossRef Tezuka Y (1997) Concentration profiles of conducting species in polypyrrole films in cyclic voltammetry by means of a diode array detector. J Electroanal Chem 425:167–172CrossRef
Zurück zum Zitat Tso CH, Madden JD, Michal CA (2007) An NMR study of PF6-ions in polypyrrole. Synth Met 157(10-12):460–466CrossRef Tso CH, Madden JD, Michal CA (2007) An NMR study of PF6-ions in polypyrrole. Synth Met 157(10-12):460–466CrossRef
Zurück zum Zitat Wang X, Smela E, Shapiro B (2004) Understanding ion transport in conjugated polymers. In: Bar-Cohen Y (ed) Smart structures and materials 2004: electroactive polymer actuators and devices (EAPAD), vol 5385, pp 146–154 Wang X, Smela E, Shapiro B (2004) Understanding ion transport in conjugated polymers. In: Bar-Cohen Y (ed) Smart structures and materials 2004: electroactive polymer actuators and devices (EAPAD), vol 5385, pp 146–154
Zurück zum Zitat Wang X, Shapiro B, Smela E (2009) Development of a model for charge transport in conjugated polymers. J Phys Chem C 113(1):382–401CrossRef Wang X, Shapiro B, Smela E (2009) Development of a model for charge transport in conjugated polymers. J Phys Chem C 113(1):382–401CrossRef
Zurück zum Zitat Warren MR, Madden JDW (2006a) A structural, electronic and electrochemical study of polypyrrole as a function of oxidation state. Synth Met 156(9–10):724–730CrossRef Warren MR, Madden JDW (2006a) A structural, electronic and electrochemical study of polypyrrole as a function of oxidation state. Synth Met 156(9–10):724–730CrossRef
Zurück zum Zitat Warren MR, Madden JDW (2006b) Electrochemical switching of conducting polymers: a variable resistance transmission line model. J Electroanal Chem 590(1):76–81CrossRef Warren MR, Madden JDW (2006b) Electrochemical switching of conducting polymers: a variable resistance transmission line model. J Electroanal Chem 590(1):76–81CrossRef
Zurück zum Zitat Wing Yu Lam J (2011) Influences of growth conditions and porosity on polypyrrole for supercapacitor electrode performance. UBC, Vancouver, BC, Canada Wing Yu Lam J (2011) Influences of growth conditions and porosity on polypyrrole for supercapacitor electrode performance. UBC, Vancouver, BC, Canada
Zurück zum Zitat Wu Y et al (2007) Soft mechanical sensors through reverse actuation in polypyrrole. Adv Funct Mater 17(16):3216–3222CrossRef Wu Y et al (2007) Soft mechanical sensors through reverse actuation in polypyrrole. Adv Funct Mater 17(16):3216–3222CrossRef
Zurück zum Zitat Yamaura M, Sato K, Iwata K (1992) Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synth Met 48(3):337–354CrossRef Yamaura M, Sato K, Iwata K (1992) Memory effect of electrical conductivity upon the counter-anion exchange of polypyrrole films. Synth Met 48(3):337–354CrossRef
Zurück zum Zitat Yao Q, Alici G, Spinks GM (2008) Feedback control of tri-layer polymer actuators to improve their positioning ability and speed of response. Sens Actuators A 144(1):176–184CrossRef Yao Q, Alici G, Spinks GM (2008) Feedback control of tri-layer polymer actuators to improve their positioning ability and speed of response. Sens Actuators A 144(1):176–184CrossRef
Zurück zum Zitat Yoo DS et al (2011) Multiple time constant modelling of a printed conducting polymer electrode. Electrochim Acta 56(13):4711–4716CrossRef Yoo DS et al (2011) Multiple time constant modelling of a printed conducting polymer electrode. Electrochim Acta 56(13):4711–4716CrossRef
Zurück zum Zitat Zama T et al (2005) Comparison of conducting polymer actuators based on polypyrrole doped with BF4-, PF6-, CF3So3-, and ClO4-. Bull Chem Soc Jpn 78(3):506–511CrossRef Zama T et al (2005) Comparison of conducting polymer actuators based on polypyrrole doped with BF4-, PF6-, CF3So3-, and ClO4-. Bull Chem Soc Jpn 78(3):506–511CrossRef
Zurück zum Zitat Zheng W et al (2011) Artificial muscles based on polypyrrole/carbon nanotube laminates. Adv Mater (Deerfield Beach, Florida) 23(26):2966–2970CrossRef Zheng W et al (2011) Artificial muscles based on polypyrrole/carbon nanotube laminates. Adv Mater (Deerfield Beach, Florida) 23(26):2966–2970CrossRef
Metadaten
Titel
Conducting Polymers as EAPs: Physical Description and Simulation
verfasst von
Meisam Farajollahi
Gursel Alici
Mirza Saquib Sarwar
John D. W. Madden
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31530-0_15

Neuer Inhalt