Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 2/2011

01.02.2011 | Original Article

Conduction block of whole nerve without onset firing using combined high frequency and direct current

verfasst von: D. Michael Ackermann Jr., Niloy Bhadra, Emily L. Foldes, Kevin L. Kilgore

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates a novel technique for blocking a nerve using a combination of direct and high frequency alternating currents (HFAC). HFAC can produce a fast acting and reversible conduction block, but cause intense firing at the onset of current delivery. We hypothesized that a direct current (DC) block could be used for a very brief period in combination with HFAC to block the onset firing, and thus establish a nerve conduction block which does not transmit onset response firing to an end organ. Experiments were performed in rats to evaluate (1) nerve response to anodic and cathodic DC of various amplitudes, (2) degree of nerve activation to ramped DC, (3) a method of blocking onset firing generated by high frequency block with DC, and (4) prolonged non-electrical conduction failure caused by DC delivery. The results showed that cathodic currents produced complete block of the sciatic nerve with a mean block threshold amplitude of 1.73 mA. Ramped DC waveforms allowed for conduction block without nerve activation; however, down ramps were more reliable than up ramps. The degree of nerve activity was found to have a non-monotonic relationship with up ramp time. Block of the onset response resulting from 40 kHz current using DC was achieved in each of the six animals in which it was attempted; however, DC was found to produce a prolonged conduction failure that likely resulted from nerve damage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ackermann D, Foldes E, Bhadra N, Kilgore K (2009) Effect of bipolar cuff electrode design on block thresholds in high frequency electrical neural conduction block. IEEE Trans Neural Syst Rehabil Eng 17:469–477CrossRefPubMed Ackermann D, Foldes E, Bhadra N, Kilgore K (2009) Effect of bipolar cuff electrode design on block thresholds in high frequency electrical neural conduction block. IEEE Trans Neural Syst Rehabil Eng 17:469–477CrossRefPubMed
2.
Zurück zum Zitat Ackermann D, Foldes E, Bhadra N, Kilgore K (2009) Electrode design for high frequency block: effect of bipolar separation on block thresholds and onset activity. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society Ackermann D, Foldes E, Bhadra N, Kilgore K (2009) Electrode design for high frequency block: effect of bipolar separation on block thresholds and onset activity. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society
3.
Zurück zum Zitat Ackermann D, Foldes E, Bhadra N, Kilgore K (2010) Conduction block of peripheral nerve using high frequency alternating currents delivered through an intrafascicular electrode. Muscle Nerve 41(1):117–119CrossRefPubMed Ackermann D, Foldes E, Bhadra N, Kilgore K (2010) Conduction block of peripheral nerve using high frequency alternating currents delivered through an intrafascicular electrode. Muscle Nerve 41(1):117–119CrossRefPubMed
4.
Zurück zum Zitat Ackermann D, Bhadra N, Foldes E, Kilgore K (2010) Effect of nerve cuff electrode geometry on onset response firing in conduction block of whole nerve using high frequency alternating currents. IEEE Trans Neural Syst Rehabil Eng (in press) Ackermann D, Bhadra N, Foldes E, Kilgore K (2010) Effect of nerve cuff electrode geometry on onset response firing in conduction block of whole nerve using high frequency alternating currents. IEEE Trans Neural Syst Rehabil Eng (in press)
5.
Zurück zum Zitat Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE Trans Biomed Eng 35:494–495CrossRefPubMed Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE Trans Biomed Eng 35:494–495CrossRefPubMed
6.
Zurück zum Zitat Bergamini CM (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611CrossRefPubMed Bergamini CM (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611CrossRefPubMed
7.
Zurück zum Zitat Bhadra N, Kilgore KL (2004) Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng 12:313CrossRefPubMed Bhadra N, Kilgore KL (2004) Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng 12:313CrossRefPubMed
8.
Zurück zum Zitat Bhadra N, Kilgore KL (2005) High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve 32:782CrossRefPubMed Bhadra N, Kilgore KL (2005) High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve 32:782CrossRefPubMed
9.
Zurück zum Zitat Bhadra N, Bhadra N, Kilgore K, Gustafson KJ (2006) High frequency electrical conduction block of the pudendal nerve. J Neural Eng 3:180CrossRefPubMed Bhadra N, Bhadra N, Kilgore K, Gustafson KJ (2006) High frequency electrical conduction block of the pudendal nerve. J Neural Eng 3:180CrossRefPubMed
10.
Zurück zum Zitat Boger A, Bhadra N, Gustafson KJ (2008) Bladder voiding by combined high frequency electrical pudendal nerve block and sacral root stimulation. Neurourol Urodyn 27:435CrossRefPubMed Boger A, Bhadra N, Gustafson KJ (2008) Bladder voiding by combined high frequency electrical pudendal nerve block and sacral root stimulation. Neurourol Urodyn 27:435CrossRefPubMed
11.
Zurück zum Zitat Bowman B, McNeal D (1986) Response of single alpha motorneurons to high-frequency pulse trains. Appl Neurophysiol 49:121–138PubMed Bowman B, McNeal D (1986) Response of single alpha motorneurons to high-frequency pulse trains. Appl Neurophysiol 49:121–138PubMed
12.
Zurück zum Zitat Brindley GS (1980) A technique for anodally blocking large nerve fibres through chronically implanted electrodes. J Neurol Neurosurg 43:1083CrossRef Brindley GS (1980) A technique for anodally blocking large nerve fibres through chronically implanted electrodes. J Neurol Neurosurg 43:1083CrossRef
13.
Zurück zum Zitat Casey KL, Blick M (1969) Observations on anodal polarization of cutaneous nerve. Brain Res 13:155CrossRefPubMed Casey KL, Blick M (1969) Observations on anodal polarization of cutaneous nerve. Brain Res 13:155CrossRefPubMed
14.
Zurück zum Zitat ElBasiouny SM, Mushahwar VK (2007) Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study. J Appl Physiol 103:276–286CrossRefPubMed ElBasiouny SM, Mushahwar VK (2007) Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study. J Appl Physiol 103:276–286CrossRefPubMed
15.
Zurück zum Zitat Foldes E, Ackermann D, Bhadra N, Kilgore K (2009) Counted cycles method to quantify the onset activity in high-frequency peripheral nerve block. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 614–617 Foldes E, Ackermann D, Bhadra N, Kilgore K (2009) Counted cycles method to quantify the onset activity in high-frequency peripheral nerve block. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 614–617
16.
Zurück zum Zitat Gaunt R, Prochazka A (2009) Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehabil Neural Repair 23:615CrossRefPubMed Gaunt R, Prochazka A (2009) Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehabil Neural Repair 23:615CrossRefPubMed
17.
Zurück zum Zitat Goldman L, Albus J (1968) Computation of impulse conduction in myelinated fibers: theoretical basis of the velocity-diameter relation. Biophys J 8:596–607CrossRefPubMed Goldman L, Albus J (1968) Computation of impulse conduction in myelinated fibers: theoretical basis of the velocity-diameter relation. Biophys J 8:596–607CrossRefPubMed
18.
Zurück zum Zitat Guyton DL (1974) Theory and design of capacitor electrodes for chronic stimulation. Medical 12:613 Guyton DL (1974) Theory and design of capacitor electrodes for chronic stimulation. Medical 12:613
19.
Zurück zum Zitat Guz A (1971) The role of non-myelinated vagal afferent fibres from the lungs in the genesis of tachypnoea in the rabbit. J Physiol (Paris) 213:345 Guz A (1971) The role of non-myelinated vagal afferent fibres from the lungs in the genesis of tachypnoea in the rabbit. J Physiol (Paris) 213:345
20.
Zurück zum Zitat Hennings K (2005) Orderly activation of human motor neurons using electrical ramp prepulses. Clin Neurophysiol 116:597CrossRefPubMed Hennings K (2005) Orderly activation of human motor neurons using electrical ramp prepulses. Clin Neurophysiol 116:597CrossRefPubMed
21.
Zurück zum Zitat Joseph L, Haeffele BD, Butera RJ (2007) Conduction block induced by high frequency AC stimulation in unmyelinated nerves. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society, vol 2007, pp 1719 Joseph L, Haeffele BD, Butera RJ (2007) Conduction block induced by high frequency AC stimulation in unmyelinated nerves. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society, vol 2007, pp 1719
22.
Zurück zum Zitat Karu ZZ, Durfee WK, Barzilai AM (1995) Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng 42:809CrossRefPubMed Karu ZZ, Durfee WK, Barzilai AM (1995) Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans Biomed Eng 42:809CrossRefPubMed
23.
Zurück zum Zitat Kilgore K, Bhadra N (2004) Nerve conduction block utilizing high-frequency alternating current. Med Biol Eng Comput 42:394–406CrossRefPubMed Kilgore K, Bhadra N (2004) Nerve conduction block utilizing high-frequency alternating current. Med Biol Eng Comput 42:394–406CrossRefPubMed
24.
Zurück zum Zitat Kilgore K, Foldes E, Ackermann D, Bhadra N (2009) Combined direct current and high frequency nerve block for elimination of the onset response. Presented at Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE Kilgore K, Foldes E, Ackermann D, Bhadra N (2009) Combined direct current and high frequency nerve block for elimination of the onset response. Presented at Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
25.
Zurück zum Zitat Kuffler SW (1947) The small-nerve motor system to skeletal muscle. J Neurophysiol 10:383PubMed Kuffler SW (1947) The small-nerve motor system to skeletal muscle. J Neurophysiol 10:383PubMed
26.
Zurück zum Zitat Kuffler SW (1953) Small-nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J Physiol (Paris) 121:289 Kuffler SW (1953) Small-nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J Physiol (Paris) 121:289
27.
Zurück zum Zitat Manfredi M (1970) Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch Ital Biol 108:52PubMed Manfredi M (1970) Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch Ital Biol 108:52PubMed
28.
Zurück zum Zitat McCloskey DI (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Paris) 224:173 McCloskey DI (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Paris) 224:173
29.
Zurück zum Zitat Merrill D (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171CrossRefPubMed Merrill D (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171CrossRefPubMed
30.
Zurück zum Zitat Miles JD, Kilgore K, Bhadra N, Lahowetz E (2007) Effects of ramped amplitude waveforms on the onset response of high-frequency mammalian nerve block. J Neural Eng 4:390CrossRefPubMed Miles JD, Kilgore K, Bhadra N, Lahowetz E (2007) Effects of ramped amplitude waveforms on the onset response of high-frequency mammalian nerve block. J Neural Eng 4:390CrossRefPubMed
31.
Zurück zum Zitat Petruska JC, Hubscher CH, Johnson RD (1998) Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei. Exp Brain Res Experimentelle Hirnforschung Experimentation Cerebrale 121:379 Petruska JC, Hubscher CH, Johnson RD (1998) Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei. Exp Brain Res Experimentelle Hirnforschung Experimentation Cerebrale 121:379
32.
Zurück zum Zitat Pflüger E (1858) Untersuchungen Uber die Physiologie des Electrotonus. Hirschwald, Berlin Pflüger E (1858) Untersuchungen Uber die Physiologie des Electrotonus. Hirschwald, Berlin
33.
Zurück zum Zitat Rosenblueth A, Reboul J (1939) The blocking and deblocking effects of alternating currents on nerve. Am J Physiol 125:251–264 Rosenblueth A, Reboul J (1939) The blocking and deblocking effects of alternating currents on nerve. Am J Physiol 125:251–264
34.
Zurück zum Zitat Sassen M, Zimmermann M (1973) Differential blocking of myelinated nerve fibres by transient depolarization. Pflugers Arch 341:179CrossRefPubMed Sassen M, Zimmermann M (1973) Differential blocking of myelinated nerve fibres by transient depolarization. Pflugers Arch 341:179CrossRefPubMed
35.
Zurück zum Zitat Scheiner A, Mortimer J, Roessmann U (1990) Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng 18:407–425CrossRefPubMed Scheiner A, Mortimer J, Roessmann U (1990) Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng 18:407–425CrossRefPubMed
37.
Zurück zum Zitat Sweeney JD, Mortimer JT (1986) An asymmetric two electrode cuf for generation of unidirectionally propagated action potentials. IEEE Trans Biomed Eng BME-33:541–549CrossRef Sweeney JD, Mortimer JT (1986) An asymmetric two electrode cuf for generation of unidirectionally propagated action potentials. IEEE Trans Biomed Eng BME-33:541–549CrossRef
38.
Zurück zum Zitat Tai C, Roppolo JR, de Groat WC (2004) Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. J Urol 172:2069–2072CrossRefPubMed Tai C, Roppolo JR, de Groat WC (2004) Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. J Urol 172:2069–2072CrossRefPubMed
39.
Zurück zum Zitat Van Den Honert C, Mortimer JT (1981) A technique for collision block of peripheral nerve: single stimulus analysis. IEEE Trans Biomed Eng BME-28:373CrossRef Van Den Honert C, Mortimer JT (1981) A technique for collision block of peripheral nerve: single stimulus analysis. IEEE Trans Biomed Eng BME-28:373CrossRef
40.
Zurück zum Zitat Whitwam JG, Kidd C (1975) The use of direct current to cause selective block of large fibres in peripheral nerves. Br J Anaesth 47:1123CrossRefPubMed Whitwam JG, Kidd C (1975) The use of direct current to cause selective block of large fibres in peripheral nerves. Br J Anaesth 47:1123CrossRefPubMed
41.
Zurück zum Zitat Williamson RP, Andrews BJ (2005) Localized electrical nerve blocking. IEEE Trans Biomed Eng 52:362CrossRefPubMed Williamson RP, Andrews BJ (2005) Localized electrical nerve blocking. IEEE Trans Biomed Eng 52:362CrossRefPubMed
42.
Zurück zum Zitat Woo MY, Campbell B (1964) Asynchronous firing and block of peripheral nerve conduction by 20 kC alternating current. Bull Los Angel Neurol Soc 29:87 Woo MY, Campbell B (1964) Asynchronous firing and block of peripheral nerve conduction by 20 kC alternating current. Bull Los Angel Neurol Soc 29:87
43.
Zurück zum Zitat Zimmermann M (1968) Selective activation of C-fibers. Pflugers Arch 301:329CrossRef Zimmermann M (1968) Selective activation of C-fibers. Pflugers Arch 301:329CrossRef
Metadaten
Titel
Conduction block of whole nerve without onset firing using combined high frequency and direct current
verfasst von
D. Michael Ackermann Jr.
Niloy Bhadra
Emily L. Foldes
Kevin L. Kilgore
Publikationsdatum
01.02.2011
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 2/2011
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-010-0679-x

Weitere Artikel der Ausgabe 2/2011

Medical & Biological Engineering & Computing 2/2011 Zur Ausgabe