Skip to main content

2017 | OriginalPaper | Buchkapitel

Considerations on the Thermophysical Properties of Nanofluids

verfasst von : K. V. Sharma, Akilu Suleiman, Hj. Suhaimi B. Hassan, Gurumurthy Hegde

Erschienen in: Engineering Applications of Nanotechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The properties such as viscosity, thermal conductivity, specific heat, and density of nanofluids have been determined by various investigators through experiments. An equation developed for specific heat and density employing the law of mixtures is observed to be valid when compared with the experimental data. However, the experimental data of viscosity and thermal conductivity reported by investigators are observed to vary by more than 25 % for certain nanofluids. Theoretical models for the estimation of properties are yet to be developed. The nanofluid properties are essential for the comparison of heat transfer enhancement capabilities. Equations are developed for the estimation of viscosity and thermal conductivity by Corcione and Sharma et al. These equations are flexible to determine the nanofluid properties for a wide range of operating parameters which can predict the experimental data of water-based nanofluids with a maximum deviation of 12 %.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASHRAE, A. (2005). Handbook of fundamentals. Atlanta, GA: American Society of Heating Refrigerating and Air Conditioning Engineers. ASHRAE, A. (2005). Handbook of fundamentals. Atlanta, GA: American Society of Heating Refrigerating and Air Conditioning Engineers.
Zurück zum Zitat Barbés, B., Páramo, R., Blanco, E., Pastoriza-Gallego, M. J., Piñeiro, M. M., Legido, J. L., et al. (2013). Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry, 111(2), 1615–1625.CrossRef Barbés, B., Páramo, R., Blanco, E., Pastoriza-Gallego, M. J., Piñeiro, M. M., Legido, J. L., et al. (2013). Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry, 111(2), 1615–1625.CrossRef
Zurück zum Zitat Batchelor, G. K. (1977). Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97–117.MathSciNetCrossRef Batchelor, G. K. (1977). Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97–117.MathSciNetCrossRef
Zurück zum Zitat Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129–1136.CrossRef Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129–1136.CrossRef
Zurück zum Zitat Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. Journal of Nanoparticle Research, 12(4), 1469–1477.CrossRef Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. Journal of Nanoparticle Research, 12(4), 1469–1477.CrossRef
Zurück zum Zitat Branson, B. T., Beauchamp, P. S., Beam, J. C., Lukehart, C. M., & Davidson, J. L. (2013). Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano, 7(4), 3183–3189.CrossRef Branson, B. T., Beauchamp, P. S., Beam, J. C., Lukehart, C. M., & Davidson, J. L. (2013). Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano, 7(4), 3183–3189.CrossRef
Zurück zum Zitat Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571–581.CrossRef Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571–581.CrossRef
Zurück zum Zitat Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der mischkörper aus isotropen substanzen. Annalen der Physik, 24, 636–679.CrossRef Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der mischkörper aus isotropen substanzen. Annalen der Physik, 24, 636–679.CrossRef
Zurück zum Zitat Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106(9), 094312.CrossRef Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106(9), 094312.CrossRef
Zurück zum Zitat Chen, H., Ding, Y., He, Y., & Tan, C. (2007). Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters, 444(4–6), 333–337.CrossRef Chen, H., Ding, Y., He, Y., & Tan, C. (2007). Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters, 444(4–6), 333–337.CrossRef
Zurück zum Zitat Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 153107–153107–3. Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 153107–153107–3.
Zurück zum Zitat Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789–793.CrossRef Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789–793.CrossRef
Zurück zum Zitat Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat transfer in nanofluids—A review. Heat Transfer Engineering, 27(10), 3–19.CrossRef Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat transfer in nanofluids—A review. Heat Transfer Engineering, 27(10), 3–19.CrossRef
Zurück zum Zitat Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567–574.CrossRef Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567–574.CrossRef
Zurück zum Zitat De Noni Jr, A., Garcia, D. E., & Hotza, D. (2002). A modified model for the viscosity of ceramic suspensions. Ceramics International, 28(7), 731–735.CrossRef De Noni Jr, A., Garcia, D. E., & Hotza, D. (2002). A modified model for the viscosity of ceramic suspensions. Ceramics International, 28(7), 731–735.CrossRef
Zurück zum Zitat Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Experimental Thermal and Fluid Science, 33(4), 706–714.CrossRef Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Experimental Thermal and Fluid Science, 33(4), 706–714.CrossRef
Zurück zum Zitat Eastman, J., Choi, S., Li, S., Yu, W., & Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.CrossRef Eastman, J., Choi, S., Li, S., Yu, W., & Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.CrossRef
Zurück zum Zitat Every, A., Tzou, Y., Hasselman, D., & Raj, R. (1992). The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 40(1), 123–129.CrossRef Every, A., Tzou, Y., Hasselman, D., & Raj, R. (1992). The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 40(1), 123–129.CrossRef
Zurück zum Zitat Feng, Y., Yu, B., Feng, K., Xu, P., & Zou, M. (2008). Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. Journal of Nanoparticle Research, 10(8), 1319–1328.CrossRef Feng, Y., Yu, B., Feng, K., Xu, P., & Zou, M. (2008). Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. Journal of Nanoparticle Research, 10(8), 1319–1328.CrossRef
Zurück zum Zitat Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22(6), 847–853.CrossRef Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22(6), 847–853.CrossRef
Zurück zum Zitat Fullman, R. (1953). Measurement of particle sizes in opaque bodies. General Electric Research Laboratory. Fullman, R. (1953). Measurement of particle sizes in opaque bodies. General Electric Research Laboratory.
Zurück zum Zitat Garg, J., Poudel, B., Chiesa, M., Gordon, J., Ma, J., Wang, J., et al. (2008). Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 103(7), 074301.CrossRef Garg, J., Poudel, B., Chiesa, M., Gordon, J., Ma, J., Wang, J., et al. (2008). Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 103(7), 074301.CrossRef
Zurück zum Zitat Ghadimi, A., Saidur, R., & Metselaar, H. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17), 4051–4068.CrossRef Ghadimi, A., Saidur, R., & Metselaar, H. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17), 4051–4068.CrossRef
Zurück zum Zitat Godson, L., Raja, B., Lal, D. M., & Wongwises, S. (2010). Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer, 23(4), 317–332.CrossRef Godson, L., Raja, B., Lal, D. M., & Wongwises, S. (2010). Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer, 23(4), 317–332.CrossRef
Zurück zum Zitat Graham, A. L. (1981). On the viscosity of suspensions of solid spheres. Applied Scientific Research, 37(3), 275–286.MATHCrossRef Graham, A. L. (1981). On the viscosity of suspensions of solid spheres. Applied Scientific Research, 37(3), 275–286.MATHCrossRef
Zurück zum Zitat Hagen, K. D. (1999). Heat transfer with applications. : Prentice Hall. Hagen, K. D. (1999). Heat transfer with applications. : Prentice Hall.
Zurück zum Zitat Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 182–191.CrossRef Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 182–191.CrossRef
Zurück zum Zitat He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(11), 2272–2281.MATHCrossRef He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(11), 2272–2281.MATHCrossRef
Zurück zum Zitat Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., et al. (2007). Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455(1–2), 70–74.CrossRef Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., et al. (2007). Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455(1–2), 70–74.CrossRef
Zurück zum Zitat Jang, S. P., & Choi, S. U. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84(21), 4316–4318.CrossRef Jang, S. P., & Choi, S. U. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84(21), 4316–4318.CrossRef
Zurück zum Zitat Jang, S. P., & Choi, S. U. (2007). Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer, 129(5), 617–623.CrossRef Jang, S. P., & Choi, S. U. (2007). Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer, 129(5), 617–623.CrossRef
Zurück zum Zitat Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13–14), 3187–3196.MATHCrossRef Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13–14), 3187–3196.MATHCrossRef
Zurück zum Zitat Karthikeyan, N. R., Philip, J., & Raj, B. (2008). Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics, 109(1), 50–55.CrossRef Karthikeyan, N. R., Philip, J., & Raj, B. (2008). Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics, 109(1), 50–55.CrossRef
Zurück zum Zitat Kazemi-Beydokhti, A., Heris, S. Z., Moghadam, N., Shariati-Niasar, M., & Hamidi, A. A. (2014). Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chemical Engineering Communications, 201(5), 593–611.CrossRef Kazemi-Beydokhti, A., Heris, S. Z., Moghadam, N., Shariati-Niasar, M., & Hamidi, A. A. (2014). Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chemical Engineering Communications, 201(5), 593–611.CrossRef
Zurück zum Zitat Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45(4), 855–863.MATHCrossRef Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45(4), 855–863.MATHCrossRef
Zurück zum Zitat Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19), 4410–4428.MATHCrossRef Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19), 4410–4428.MATHCrossRef
Zurück zum Zitat Kim, S. H., Choi, S. R., & Kim, D. (2007). Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. Journal of Heat Transfer, 129(3), 298–307.CrossRef Kim, S. H., Choi, S. R., & Kim, D. (2007). Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. Journal of Heat Transfer, 129(3), 298–307.CrossRef
Zurück zum Zitat Kitano, T., Kataoka, T., & Shirota, T. (1981). An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheologica Acta, 20(2), 207–209.CrossRef Kitano, T., Kataoka, T., & Shirota, T. (1981). An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheologica Acta, 20(2), 207–209.CrossRef
Zurück zum Zitat Kleinstreuer, C., & Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Research Letters, 6(1), 439.CrossRef Kleinstreuer, C., & Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Research Letters, 6(1), 439.CrossRef
Zurück zum Zitat Kole, M., & Dey, T. K. (2010). Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. Journal of Physics. D. Applied Physics, 43, 315501.CrossRef Kole, M., & Dey, T. K. (2010). Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. Journal of Physics. D. Applied Physics, 43, 315501.CrossRef
Zurück zum Zitat Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6), 577–588.CrossRef Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6), 577–588.CrossRef
Zurück zum Zitat Koo, J., & Kleinstreuer, C. (2005). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32(9), 1111–1118.CrossRef Koo, J., & Kleinstreuer, C. (2005). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32(9), 1111–1118.CrossRef
Zurück zum Zitat Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of The Society of Rheology, 3(1), 137–152.MATHCrossRef Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of The Society of Rheology, 3(1), 137–152.MATHCrossRef
Zurück zum Zitat Kulkarni, D. P., Das, D. K., & Chukwu, G. A. (2006). Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150–1154.CrossRef Kulkarni, D. P., Das, D. K., & Chukwu, G. A. (2006). Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150–1154.CrossRef
Zurück zum Zitat Kulkarni, D. P., Das, D. K., & Patil, S. L. (2007). Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture. Journal of Nanoscience and Nanotechnology, 7(7), 2318–2322.CrossRef Kulkarni, D. P., Das, D. K., & Patil, S. L. (2007). Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture. Journal of Nanoscience and Nanotechnology, 7(7), 2318–2322.CrossRef
Zurück zum Zitat Kulkarni, D. P., Namburu, P. K., Ed Bargar, H., & Das, D. K. (2008). Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transfer Engineering, 29(12), 1027–1035.CrossRef Kulkarni, D. P., Namburu, P. K., Ed Bargar, H., & Das, D. K. (2008). Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transfer Engineering, 29(12), 1027–1035.CrossRef
Zurück zum Zitat Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656.CrossRef Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656.CrossRef
Zurück zum Zitat Lee, J.-H., Lee, S.-H., Choi, C. J., Jang, S. P., & Choi, S. U. (2010). A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1(4), 269–322.CrossRef Lee, J.-H., Lee, S.-H., Choi, C. J., Jang, S. P., & Choi, S. U. (2010). A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1(4), 269–322.CrossRef
Zurück zum Zitat Lee, S., Choi, S.-S., Li, S., & Eastman, J. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289.CrossRef Lee, S., Choi, S.-S., Li, S., & Eastman, J. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289.CrossRef
Zurück zum Zitat Leong, K. C., Yang, C., & Murshed, S. M. S. (2006). A model for the thermal conductivity of nanofluids—The effect of interfacial layer. Journal of Nanoparticle Research, 8(2), 245–254.CrossRef Leong, K. C., Yang, C., & Murshed, S. M. S. (2006). A model for the thermal conductivity of nanofluids—The effect of interfacial layer. Journal of Nanoparticle Research, 8(2), 245–254.CrossRef
Zurück zum Zitat Li, C. H., & Peterson, G. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99(8), 084314.CrossRef Li, C. H., & Peterson, G. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99(8), 084314.CrossRef
Zurück zum Zitat Li, J., Li, Z., & Wang, B. (2002). Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Science and Technology, 7(2), 198–201. Li, J., Li, Z., & Wang, B. (2002). Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Science and Technology, 7(2), 198–201.
Zurück zum Zitat Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochimica Acta, 469(1–2), 98–103.CrossRef Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochimica Acta, 469(1–2), 98–103.CrossRef
Zurück zum Zitat Lundgren, T. S. (1972). Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics, 51(02), 273–299.MATHCrossRef Lundgren, T. S. (1972). Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics, 51(02), 273–299.MATHCrossRef
Zurück zum Zitat Mahbubul, I., Saidur, R., & Amalina, M. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874–885.CrossRef Mahbubul, I., Saidur, R., & Amalina, M. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874–885.CrossRef
Zurück zum Zitat Mahian, O., Kianifar, A., & Wongwises, S. (2013). Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis. Journal of Cluster Science, 24(4), 1103–1114.CrossRef Mahian, O., Kianifar, A., & Wongwises, S. (2013). Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis. Journal of Cluster Science, 24(4), 1103–1114.CrossRef
Zurück zum Zitat Mariano, A., Pastoriza-Gallego, M. J., Lugo, L., Camacho, A., Canzonieri, S., & Piñeiro, M. M. (2013). Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria, 337, 119–124.CrossRef Mariano, A., Pastoriza-Gallego, M. J., Lugo, L., Camacho, A., Canzonieri, S., & Piñeiro, M. M. (2013). Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria, 337, 119–124.CrossRef
Zurück zum Zitat Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7(4), 227–233.CrossRef Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7(4), 227–233.CrossRef
Zurück zum Zitat Maxwell, J.C. (1881). Treatise on electricity and magnetism (2nd ed.). Oxford, UK: Clarendon Press. Maxwell, J.C. (1881). Treatise on electricity and magnetism (2nd ed.). Oxford, UK: Clarendon Press.
Zurück zum Zitat Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363–371.CrossRef Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363–371.CrossRef
Zurück zum Zitat Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4), 109–120.CrossRef Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4), 109–120.CrossRef
Zurück zum Zitat Murshed, S. M. S. (2011a). Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering, 33(8), 722–731.CrossRef Murshed, S. M. S. (2011a). Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering, 33(8), 722–731.CrossRef
Zurück zum Zitat Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2–water based nanofluids. International Journal of Thermal Sciences, 44(4), 367–373.CrossRef Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2–water based nanofluids. International Journal of Thermal Sciences, 44(4), 367–373.CrossRef
Zurück zum Zitat Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5), 560–568.CrossRef Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5), 560–568.CrossRef
Zurück zum Zitat Murshed, S. M. S., Leong, K. C., & Yang, C. (2009). A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering, 29(11–12), 2477–2483.CrossRef Murshed, S. M. S., Leong, K. C., & Yang, C. (2009). A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering, 29(11–12), 2477–2483.CrossRef
Zurück zum Zitat Murshed, S. S. (2011b). Determination of effective specific heat of nanofluids. Journal of Experimental Nanoscience, 6(5), 539–546.CrossRef Murshed, S. S. (2011b). Determination of effective specific heat of nanofluids. Journal of Experimental Nanoscience, 6(5), 539–546.CrossRef
Zurück zum Zitat Namburu, P., Kulkarni, D., Dandekar, A., & Das, D. (2007). Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro and Nano Letters, IET, 2(3), 67–71.CrossRef Namburu, P., Kulkarni, D., Dandekar, A., & Das, D. (2007). Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro and Nano Letters, IET, 2(3), 67–71.CrossRef
Zurück zum Zitat Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., et al. (2007). Mintsa, temperature and particle-size dependent viscosity data for water-based nanofluids—Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28(6), 1492–1506.CrossRef Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., et al. (2007). Mintsa, temperature and particle-size dependent viscosity data for water-based nanofluids—Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28(6), 1492–1506.CrossRef
Zurück zum Zitat Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41(11), 4626–4627.CrossRef Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41(11), 4626–4627.CrossRef
Zurück zum Zitat Özerinç, S., Kakaç, S., & Yazıcıoğlu, A. G. (2010). Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8(2), 145–170.CrossRef Özerinç, S., Kakaç, S., & Yazıcıoğlu, A. G. (2010). Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8(2), 145–170.CrossRef
Zurück zum Zitat Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151–170.CrossRef Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151–170.CrossRef
Zurück zum Zitat Patel, H. E., Sundararajan, T., & Das, S. K. (2010). An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 12(3), 1015–1031.CrossRef Patel, H. E., Sundararajan, T., & Das, S. K. (2010). An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 12(3), 1015–1031.CrossRef
Zurück zum Zitat Prasher, R., Phelan, P. E., & Bhattacharya, P. (2006a). Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters, 6(7), 1529–1534.CrossRef Prasher, R., Phelan, P. E., & Bhattacharya, P. (2006a). Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters, 6(7), 1529–1534.CrossRef
Zurück zum Zitat Prasher, R., Song, D., Wang, J., & Phelan, P. (2006b). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89(13), 133108.CrossRef Prasher, R., Song, D., Wang, J., & Phelan, P. (2006b). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89(13), 133108.CrossRef
Zurück zum Zitat Sahoo, B. C., Das, D. K., Vajjha, R. S., & Satti, J. R. (2012). Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations. Journal of Nanotechnology in Engineering and Medicine, 3(4), 041006.CrossRef Sahoo, B. C., Das, D. K., Vajjha, R. S., & Satti, J. R. (2012). Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations. Journal of Nanotechnology in Engineering and Medicine, 3(4), 041006.CrossRef
Zurück zum Zitat Sekhar, Y. R., & Sharma, K. (2015). Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. Journal of Experimental Nanoscience, 10(2), 86–102.CrossRef Sekhar, Y. R., & Sharma, K. (2015). Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. Journal of Experimental Nanoscience, 10(2), 86–102.CrossRef
Zurück zum Zitat Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Rheological behaviour of nanofluids: A review. Renewable and Sustainable Energy Reviews, 53, 779–791.CrossRef Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Rheological behaviour of nanofluids: A review. Renewable and Sustainable Energy Reviews, 53, 779–791.CrossRef
Zurück zum Zitat Sharma, K., Sarma, P., Azmi, W., Mamat, R., & Kadirgama, K. (2010). Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 3, 283–308. Sharma, K., Sarma, P., Azmi, W., Mamat, R., & Kadirgama, K. (2010). Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 3, 283–308.
Zurück zum Zitat Shima, P., Philip, J., & Raj, B. (2009). Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Applied Physics Letters, 94(22), 223101.CrossRef Shima, P., Philip, J., & Raj, B. (2009). Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Applied Physics Letters, 94(22), 223101.CrossRef
Zurück zum Zitat Sridhara, V., & Satapathy, L. N. (2011). Al2O3-based nanofluids: A review. Nanoscale Research Letters, 6(1), 1–16.CrossRef Sridhara, V., & Satapathy, L. N. (2011). Al2O3-based nanofluids: A review. Nanoscale Research Letters, 6(1), 1–16.CrossRef
Zurück zum Zitat Sun, T., & Teja, A. S. (2004). Density, viscosity and thermal conductivity of aqueous solutions of propylene glycol, dipropylene glycol, and tripropylene glycol between 290 K and 460 K. Journal of Chemical and Engineering Data, 49(5), 1311–1317.CrossRef Sun, T., & Teja, A. S. (2004). Density, viscosity and thermal conductivity of aqueous solutions of propylene glycol, dipropylene glycol, and tripropylene glycol between 290 K and 460 K. Journal of Chemical and Engineering Data, 49(5), 1311–1317.CrossRef
Zurück zum Zitat Sundar, L. S., Ramana, E. V., Singh, M. K., & Sousa, A. C. (2014). Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. International Communications in Heat and Mass Transfer, 56, 86–95.CrossRef Sundar, L. S., Ramana, E. V., Singh, M. K., & Sousa, A. C. (2014). Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. International Communications in Heat and Mass Transfer, 56, 86–95.CrossRef
Zurück zum Zitat Sundar, L. S., Sharma, K., Naik, M., & Singh, M. K. (2013a). Empirical and theoretical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 25, 670–686.CrossRef Sundar, L. S., Sharma, K., Naik, M., & Singh, M. K. (2013a). Empirical and theoretical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 25, 670–686.CrossRef
Zurück zum Zitat Sundar, L. S., Singh, M. K., & Sousa, A. C. (2013b). Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. International Communications in Heat and Mass Transfer, 49, 17–24.CrossRef Sundar, L. S., Singh, M. K., & Sousa, A. C. (2013b). Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. International Communications in Heat and Mass Transfer, 49, 17–24.CrossRef
Zurück zum Zitat Teng, T.-P., & Hung, Y.-H. (2014). Estimation and experimental study of the density and specific heat for alumina nanofluid. Journal of Experimental Nanoscience, 9(7), 707–718.CrossRef Teng, T.-P., & Hung, Y.-H. (2014). Estimation and experimental study of the density and specific heat for alumina nanofluid. Journal of Experimental Nanoscience, 9(7), 707–718.CrossRef
Zurück zum Zitat Teng, T.-P., Hung, Y.-H., Teng, T.-C., Mo, H.-E., & Hsu, H.-G. (2010). The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering, 30(14), 2213–2218.CrossRef Teng, T.-P., Hung, Y.-H., Teng, T.-C., Mo, H.-E., & Hsu, H.-G. (2010). The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering, 30(14), 2213–2218.CrossRef
Zurück zum Zitat Tseng, W. J., & Lin, K.-C. (2003). Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering A, 355(1–2), 186–192.CrossRef Tseng, W. J., & Lin, K.-C. (2003). Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering A, 355(1–2), 186–192.CrossRef
Zurück zum Zitat Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C., & Tavman, S. (2009). Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics, 30, 1213–1226.CrossRef Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C., & Tavman, S. (2009). Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics, 30, 1213–1226.CrossRef
Zurück zum Zitat Vajjha, R., Das, D., & Mahagaonkar, B. (2009). Density measurement of different nanofluids and their comparison with theory. Petroleum Science and Technology, 27(6), 612–624.CrossRef Vajjha, R., Das, D., & Mahagaonkar, B. (2009). Density measurement of different nanofluids and their comparison with theory. Petroleum Science and Technology, 27(6), 612–624.CrossRef
Zurück zum Zitat Vajjha, R. S., & Das, D. K. (2009a). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21), 4675–4682.MATHCrossRef Vajjha, R. S., & Das, D. K. (2009a). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21), 4675–4682.MATHCrossRef
Zurück zum Zitat Vajjha, R. S., & Das, D. K. (2009b). Specific heat measurement of three nanofluids and development of new correlations. Journal of Heat Transfer, 131(7), 071601.CrossRef Vajjha, R. S., & Das, D. K. (2009b). Specific heat measurement of three nanofluids and development of new correlations. Journal of Heat Transfer, 131(7), 071601.CrossRef
Zurück zum Zitat Wang, B.-X., Zhou, L.-P., & Peng, X.-F. (2006). Surface and size effects on the specific heat capacity of nanoparticles. International Journal of Thermophysics, 27(1), 139–151.CrossRef Wang, B.-X., Zhou, L.-P., & Peng, X.-F. (2006). Surface and size effects on the specific heat capacity of nanoparticles. International Journal of Thermophysics, 27(1), 139–151.CrossRef
Zurück zum Zitat Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480.CrossRef Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480.CrossRef
Zurück zum Zitat Wang, X.-J., Zhu, D.-S., & Yang, S. (2009). Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chemical Physics Letters, 470(1–3), 107–111.CrossRef Wang, X.-J., Zhu, D.-S., & Yang, S. (2009). Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chemical Physics Letters, 470(1–3), 107–111.CrossRef
Zurück zum Zitat Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46(1), 1–19.CrossRef Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46(1), 1–19.CrossRef
Zurück zum Zitat Wang, Y., Fisher, T. S., Davidson, J., & Jiang, L. (2002). Thermal conductivity of nanoparticle suspensions. In 8th AIAA and ASME Joint Thermophysics and Heat Transfer Conference. Wang, Y., Fisher, T. S., Davidson, J., & Jiang, L. (2002). Thermal conductivity of nanoparticle suspensions. In 8th AIAA and ASME Joint Thermophysics and Heat Transfer Conference.
Zurück zum Zitat Wasp, F. J. (1977). Solid-liquid slurry pipeline transportation. Berlin: Trans. Tech. Wasp, F. J. (1977). Solid-liquid slurry pipeline transportation. Berlin: Trans. Tech.
Zurück zum Zitat White, F. M. (1991). Viscous fluid flow. White, F. M. (1991). Viscous fluid flow.
Zurück zum Zitat Xie, H., Fujii, M., & Zhang, X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 48(14), 2926–2932.MATHCrossRef Xie, H., Fujii, M., & Zhang, X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 48(14), 2926–2932.MATHCrossRef
Zurück zum Zitat Xie, H., Wang, J., Xi, T., & Liu, Y. (2001). Study on the thermal conductivity of SiC nanofluids. Journal-Chinese Ceramic Society, 29(4), 361–364. Xie, H., Wang, J., Xi, T., & Liu, Y. (2001). Study on the thermal conductivity of SiC nanofluids. Journal-Chinese Ceramic Society, 29(4), 361–364.
Zurück zum Zitat Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. (2002a). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7), 4568–4572.CrossRef Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. (2002a). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7), 4568–4572.CrossRef
Zurück zum Zitat Xie, H., Yu, W., & Chen, W. (2010). MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience, 5(5), 463–472.CrossRef Xie, H., Yu, W., & Chen, W. (2010). MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience, 5(5), 463–472.CrossRef
Zurück zum Zitat Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6(1), 124.CrossRef Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6(1), 124.CrossRef
Zurück zum Zitat Xie, H.-Q., Wang, J.-C., Xi, T.-G., & Liu, Y. (2002b). Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics, 23(2), 571–580.CrossRef Xie, H.-Q., Wang, J.-C., Xi, T.-G., & Liu, Y. (2002b). Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics, 23(2), 571–580.CrossRef
Zurück zum Zitat Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.CrossRef Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.CrossRef
Zurück zum Zitat Xue, Q., & Xu, W.-M. (2005). A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics, 90(2), 298–301.CrossRef Xue, Q., & Xu, W.-M. (2005). A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics, 90(2), 298–301.CrossRef
Zurück zum Zitat Xue, Q.-Z. (2003). Model for effective thermal conductivity of nanofluids. Physics Letters A, 307(5), 313–317.CrossRef Xue, Q.-Z. (2003). Model for effective thermal conductivity of nanofluids. Physics Letters A, 307(5), 313–317.CrossRef
Zurück zum Zitat Yiamsawasd, T., Dalkilic, A. S., & Wongwises, S. (2012). Measurement of specific heat of nanofluids. Current Nanoscience, 8(6), 939–944.CrossRef Yiamsawasd, T., Dalkilic, A. S., & Wongwises, S. (2012). Measurement of specific heat of nanofluids. Current Nanoscience, 8(6), 939–944.CrossRef
Zurück zum Zitat Yoo, D.-H., Hong, K., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455(1), 66–69.CrossRef Yoo, D.-H., Hong, K., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455(1), 66–69.CrossRef
Zurück zum Zitat Yu, C. J., Richter, A., Datta, A., Durbin, M., & Dutta, P. (2000). Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Physica B: Condensed Matter, 283(1), 27–31.CrossRef Yu, C. J., Richter, A., Datta, A., Durbin, M., & Dutta, P. (2000). Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Physica B: Condensed Matter, 283(1), 27–31.CrossRef
Zurück zum Zitat Yu, W., & Choi, S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. Journal of Nanoparticle Research, 6(4), 355–361.CrossRef Yu, W., & Choi, S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. Journal of Nanoparticle Research, 6(4), 355–361.CrossRef
Zurück zum Zitat Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research, 5(1–2), 16–171. Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research, 5(1–2), 16–171.
Zurück zum Zitat Yu, W., Xie, H., Li, Y., Chen, L., & Wang, Q. (2012). Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technology, 230, 14–19.CrossRef Yu, W., Xie, H., Li, Y., Chen, L., & Wang, Q. (2012). Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technology, 230, 14–19.CrossRef
Zurück zum Zitat Zhou, L.-P., Wang, B.-X., Peng, X.-F., Du, X.-Z., & Yang, Y.-P. (2010) On the specific heat capacity of CuO nanofluid. Advances in Mechanical Engineering. Zhou, L.-P., Wang, B.-X., Peng, X.-F., Du, X.-Z., & Yang, Y.-P. (2010) On the specific heat capacity of CuO nanofluid. Advances in Mechanical Engineering.
Zurück zum Zitat Zhou, S.-Q., & Ni, R. (2008). Measurement of the specific heat capacity of water–based Al2O3 nanofluid. Applied Physics Letters, 92(9), 093123–093123–3. Zhou, S.-Q., & Ni, R. (2008). Measurement of the specific heat capacity of water–based Al2O3 nanofluid. Applied Physics Letters, 92(9), 093123–093123–3.
Zurück zum Zitat Zhu, H., Zhang, C., Liu, S., Tang, Y., & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letters, 89(2), 3123. Zhu, H., Zhang, C., Liu, S., Tang, Y., & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letters, 89(2), 3123.
Metadaten
Titel
Considerations on the Thermophysical Properties of Nanofluids
verfasst von
K. V. Sharma
Akilu Suleiman
Hj. Suhaimi B. Hassan
Gurumurthy Hegde
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-29761-3_2

Neuer Inhalt