Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Consolidation of Mechanically Alloyed Powders

verfasst von : Trinath Talapaneni, Vatsala Chaturvedi

Erschienen in: Mechanically Alloyed Novel Materials

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The consolidation of mechanically alloyed powders is a critical process in the field of materials science and metallurgy. Mechanically alloyed powders are synthesized through high-energy ball milling, resulting in finely divided and intimately mixed powder particles. This chapter provides an overview of the consolidation techniques employed to transform these mechanically alloyed powders into functional and advanced materials. Various consolidation methods, such as hot isostatic pressing, spark plasma sintering, powder extrusion, powder forging, solid and liquid state sintering, reaction sintering, selective laser sintering, and microwave sintering are discussed. Also, the chapter explores the effects of consolidation parameters, such as temperature, pressure, and holding time, on the properties of the final product. Further, it includes various advantages, challenges and applications of several consolidation techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suryanarayana, C., Ivanov, E., Boldyrev, V.V.: The science and technology of mechanical alloying. Mater. Sci. Eng. A 304, 151–158 (2001) Suryanarayana, C., Ivanov, E., Boldyrev, V.V.: The science and technology of mechanical alloying. Mater. Sci. Eng. A 304, 151–158 (2001)
2.
Zurück zum Zitat Suryanarayana, C.: Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2001)CrossRef Suryanarayana, C.: Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2001)CrossRef
3.
Zurück zum Zitat Suryanarayana, C.: Mechanical alloying: a novel technique to synthesize advanced materials. Research 1–15 (2019) Suryanarayana, C.: Mechanical alloying: a novel technique to synthesize advanced materials. Research 1–15 (2019)
4.
Zurück zum Zitat Chaira, D.: Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressure less sintering. Mater Charact 99, 220–229 (2015)CrossRef Chaira, D.: Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressure less sintering. Mater Charact 99, 220–229 (2015)CrossRef
5.
Zurück zum Zitat Stainless Steels - Introduction to Grades, Properties and Applications, Supplier Data by Aalco (2005) Stainless Steels - Introduction to Grades, Properties and Applications, Supplier Data by Aalco (2005)
6.
Zurück zum Zitat Majzoobi, G.H., Atrian, A., Pipelzadeh, M.K.: Effect of densification rate on consolidation and properties of Al7075–B4C composite powder. Powder Metall. 58(4), 281–288 (2015)CrossRef Majzoobi, G.H., Atrian, A., Pipelzadeh, M.K.: Effect of densification rate on consolidation and properties of Al7075–B4C composite powder. Powder Metall. 58(4), 281–288 (2015)CrossRef
7.
Zurück zum Zitat Choudhuri, D., Blake, L.: Particle curvature effects on microstructural evolution during solid-state sintering: phenomenological insights from phase-field simulations. J. Mater. Sci. 56(12), 7474–7493 (2021)CrossRef Choudhuri, D., Blake, L.: Particle curvature effects on microstructural evolution during solid-state sintering: phenomenological insights from phase-field simulations. J. Mater. Sci. 56(12), 7474–7493 (2021)CrossRef
8.
Zurück zum Zitat Seth, P.P., Singh, N., Singh, M., Prakash, O., Kumar, D.: Formation of fine Mg2Si phase in Mg–Si alloy via solid-state sintering using high energy ball milling. J. Alloys Compd. 821, 153205 (2020). Seth, P.P., Singh, N., Singh, M., Prakash, O., Kumar, D.: Formation of fine Mg2Si phase in Mg–Si alloy via solid-state sintering using high energy ball milling. J. Alloys Compd. 821, 153205 (2020).
9.
Zurück zum Zitat Long, K., Zhong, Y., Li, M., Shu, C., Zhang, C., Shi, L., He, X.: Three-dimensional sintering morphology simulation of silica fibrous insulator and its quantitative description. Ceram. Int. 48(14), 19557–19566 (2022)CrossRef Long, K., Zhong, Y., Li, M., Shu, C., Zhang, C., Shi, L., He, X.: Three-dimensional sintering morphology simulation of silica fibrous insulator and its quantitative description. Ceram. Int. 48(14), 19557–19566 (2022)CrossRef
10.
Zurück zum Zitat Gille, G., Szesny, B., Dreyer, K., Van Den Berg, H., Schmidt, J., Gestrich, T., Leitner, G.: Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int. J. Refract. Metals Hard Mater. 20(1), 3–22 (2002)CrossRef Gille, G., Szesny, B., Dreyer, K., Van Den Berg, H., Schmidt, J., Gestrich, T., Leitner, G.: Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int. J. Refract. Metals Hard Mater. 20(1), 3–22 (2002)CrossRef
11.
Zurück zum Zitat Onyishi, H.O., Oluah, C.K.: An overview of the state of the art and applications of sintered metals. IOSR J. Mech. Civ. Eng 17, 1–10 (2020) Onyishi, H.O., Oluah, C.K.: An overview of the state of the art and applications of sintered metals. IOSR J. Mech. Civ. Eng 17, 1–10 (2020)
12.
Zurück zum Zitat Olmos, L., Cabezas-Villa, J.L., Bouvard, D., Lemus-Ruiz, J., Jiménez, O., Falcón-Franco, L.A.: Synthesis and characterisation of Ti6Al4V/xTa alloy processed by solid state sintering. Powder Metall. 63(1), 64–74 (2020)CrossRef Olmos, L., Cabezas-Villa, J.L., Bouvard, D., Lemus-Ruiz, J., Jiménez, O., Falcón-Franco, L.A.: Synthesis and characterisation of Ti6Al4V/xTa alloy processed by solid state sintering. Powder Metall. 63(1), 64–74 (2020)CrossRef
13.
Zurück zum Zitat Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A.: Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33(3), 419–426 (2007) Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A.: Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33(3), 419–426 (2007)
14.
Zurück zum Zitat Meng, X., Hao, J., Cao, H., Lin, X., Ning, P., Zheng, X., Chang, J., Zhang, X., Wang, B., Sun, Z.: Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019)CrossRefPubMed Meng, X., Hao, J., Cao, H., Lin, X., Ning, P., Zheng, X., Chang, J., Zhang, X., Wang, B., Sun, Z.: Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019)CrossRefPubMed
15.
Zurück zum Zitat Lalana, E.H.: Permanent magnets and its production by powder metallurgy. Rev. Metal. 54(2), 1–10 (2018) Lalana, E.H.: Permanent magnets and its production by powder metallurgy. Rev. Metal. 54(2), 1–10 (2018)
16.
Zurück zum Zitat de Oro Calderon, R., Gierl-Mayer, C., Danninger, H.: Fundamentals of sintering: liquid phase sintering. Encycl. Mater. Metals Alloys 3, 481–492 (2022) de Oro Calderon, R., Gierl-Mayer, C., Danninger, H.: Fundamentals of sintering: liquid phase sintering. Encycl. Mater. Metals Alloys 3, 481–492 (2022)
17.
Zurück zum Zitat Kang, S.-J.L.: Sintering: Densification, Grain Growth and Microstructure. Elsevier (2004). Kang, S.-J.L.: Sintering: Densification, Grain Growth and Microstructure. Elsevier (2004).
18.
Zurück zum Zitat Hausner, H.: Reaction sintering. In: Concise Encyclopedia of Advanced Ceramic Materials, pp. 389–391 (1991) Hausner, H.: Reaction sintering. In: Concise Encyclopedia of Advanced Ceramic Materials, pp. 389–391 (1991)
19.
Zurück zum Zitat Li, B., Wei, Y., Li, N., Zhang, T., Wang, J.: Effect of Al(OH)3 and La2O3 on the sintering behavior of CaO granules via CaCo3 decomposition. Sci. Sinter. 52(2), 195–206 (2020)CrossRef Li, B., Wei, Y., Li, N., Zhang, T., Wang, J.: Effect of Al(OH)3 and La2O3 on the sintering behavior of CaO granules via CaCo3 decomposition. Sci. Sinter. 52(2), 195–206 (2020)CrossRef
20.
Zurück zum Zitat Zou, J., Ma, H.-B., Liu, J.-J., Wang, W.-M., Zhang, G.-J., Fu, Z.-Y.: Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff. J. Mater. Sci. Technol. 58, 1–9 (2020)CrossRef Zou, J., Ma, H.-B., Liu, J.-J., Wang, W.-M., Zhang, G.-J., Fu, Z.-Y.: Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff. J. Mater. Sci. Technol. 58, 1–9 (2020)CrossRef
21.
Zurück zum Zitat Zou, J., Liu, J.J., Zhang, G.J., Fu, Z.Y.: Tuning the combustion process during reactive sintering of high-performance ceramics by employing solid solutions as reactants. J. Eur. Ceram. Soc. 41, 101–113 (2021)CrossRef Zou, J., Liu, J.J., Zhang, G.J., Fu, Z.Y.: Tuning the combustion process during reactive sintering of high-performance ceramics by employing solid solutions as reactants. J. Eur. Ceram. Soc. 41, 101–113 (2021)CrossRef
22.
Zurück zum Zitat Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E.: Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J. Am. Ceram. Soc. 89, 3638–3645 (2006)CrossRef Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E.: Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J. Am. Ceram. Soc. 89, 3638–3645 (2006)CrossRef
23.
Zurück zum Zitat Zou, J., Zhang, G.-J., Fu, Z.-Y.: In-situ ZrB2-hBN ceramics with high strength and low elasticity. J. Mater. Sci. Technol. 48, 186–193 (2020)CrossRef Zou, J., Zhang, G.-J., Fu, Z.-Y.: In-situ ZrB2-hBN ceramics with high strength and low elasticity. J. Mater. Sci. Technol. 48, 186–193 (2020)CrossRef
24.
Zurück zum Zitat Zou, J., Zhang, G.J., Shen, Z.J., Binner, J.: Ultra-low temperature reactive spark plasma sintering of ZrB2-hBN ceramics. J. Eur. Ceram. Soc. 36, 3637–3645 (2016)CrossRef Zou, J., Zhang, G.J., Shen, Z.J., Binner, J.: Ultra-low temperature reactive spark plasma sintering of ZrB2-hBN ceramics. J. Eur. Ceram. Soc. 36, 3637–3645 (2016)CrossRef
25.
Zurück zum Zitat Zou, J., Bin Ma, H., Chen, L., Wang, Y.J., Zhang, G.J.: Key issues on the reactive sintering of ZrB2 ceramics from elementary raw materials. Scr. Mater. 164, 105–109 (2019) Zou, J., Bin Ma, H., Chen, L., Wang, Y.J., Zhang, G.J.: Key issues on the reactive sintering of ZrB2 ceramics from elementary raw materials. Scr. Mater. 164, 105–109 (2019)
26.
Zurück zum Zitat Gu, J., Zou, J., Ma, P., Wang, H., Zhang, J., Wang, W., Fu, Z.: Reactive sintering of B4CTaB2 ceramics via carbide boronizing: reaction process, microstructure and mechanical properties. J. Mater. Sci. Technol. 35, 2840–2850 (2019)CrossRef Gu, J., Zou, J., Ma, P., Wang, H., Zhang, J., Wang, W., Fu, Z.: Reactive sintering of B4CTaB2 ceramics via carbide boronizing: reaction process, microstructure and mechanical properties. J. Mater. Sci. Technol. 35, 2840–2850 (2019)CrossRef
27.
Zurück zum Zitat Feng, L., Lee, S.-H., Kim, H.-N.: Effects of high-energy ball milling and reactive spark plasma sintering on the densification of HfC-SiC composites. J. Eur. Ceram. Soc. 37, 1891–1898 (2017)CrossRef Feng, L., Lee, S.-H., Kim, H.-N.: Effects of high-energy ball milling and reactive spark plasma sintering on the densification of HfC-SiC composites. J. Eur. Ceram. Soc. 37, 1891–1898 (2017)CrossRef
28.
Zurück zum Zitat Wu, H.-Y., Zou, Ji., Eriksson, M., Liu, J.-J., Wang, W.-M., Fu, Z.-Y.: Reactive sintering of 2.5D Cf/ZrC-SiC ceramic matrix composite. J. Eur. Cer. Soc. 41(13), 6189–6195 (2021) Wu, H.-Y., Zou, Ji., Eriksson, M., Liu, J.-J., Wang, W.-M., Fu, Z.-Y.: Reactive sintering of 2.5D Cf/ZrC-SiC ceramic matrix composite. J. Eur. Cer. Soc. 41(13), 6189–6195 (2021)
29.
Zurück zum Zitat Luyten, J., Cooymans, J.F.C., Snijkers, F.M.M.: Reaction-based processing methods. Key Eng. Mater. 264, 707–712 (2004) Luyten, J., Cooymans, J.F.C., Snijkers, F.M.M.: Reaction-based processing methods. Key Eng. Mater. 264, 707–712 (2004)
30.
Zurück zum Zitat Akhtar, S., Saad, M., Misbah, M.R., Sati, M.C.: Recent advancements in powder metallurgy: a review. Mater. Today: Proc. 5(9), 18649–18655 (2018) Akhtar, S., Saad, M., Misbah, M.R., Sati, M.C.: Recent advancements in powder metallurgy: a review. Mater. Today: Proc. 5(9), 18649–18655 (2018)
31.
Zurück zum Zitat Wang, X.C., Laoui, T., Bonse, J., Kruth, J.-P., Lauwers, B., Froyen, L.: Direct selective laser sintering of hard metal powders: experimental study and simulation. Int. J. Adv. Manufa. Technol. 19, 351–357 (2002) Wang, X.C., Laoui, T., Bonse, J., Kruth, J.-P., Lauwers, B., Froyen, L.: Direct selective laser sintering of hard metal powders: experimental study and simulation. Int. J. Adv. Manufa. Technol. 19, 351–357 (2002)
32.
Zurück zum Zitat Natarajan, J. (ed.): Advances in Additive Manufacturing Processes. Bentham Science Publishers (2021) Natarajan, J. (ed.): Advances in Additive Manufacturing Processes. Bentham Science Publishers (2021)
33.
Zurück zum Zitat Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G.G., Lavorgna, M., Xia, H., Silvestre, C., Ambrosio, L.: Selective laser sintering fabricated thermoplastic polyurethane/graphene cellular structures with tailorable properties and high strain sensitivity. Appl. Sci. 9(5), 864 (2019)CrossRef Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G.G., Lavorgna, M., Xia, H., Silvestre, C., Ambrosio, L.: Selective laser sintering fabricated thermoplastic polyurethane/graphene cellular structures with tailorable properties and high strain sensitivity. Appl. Sci. 9(5), 864 (2019)CrossRef
34.
Zurück zum Zitat Tiwari, S.K., Pande, S., Agrawal, S., Bobade, S.M.: Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 21(6), 630–648 (2015) Tiwari, S.K., Pande, S., Agrawal, S., Bobade, S.M.: Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 21(6), 630–648 (2015)
35.
Zurück zum Zitat Yang, Y., Ragnvaldsen, O., Bai, Y., et al.: 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering. NPJ Comput. Mater. 5, 81 (2019) Yang, Y., Ragnvaldsen, O., Bai, Y., et al.: 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering. NPJ Comput. Mater. 5, 81 (2019)
36.
Zurück zum Zitat Hong, D., Yuan, J., Yin, Z., Peng, H., Zhu, Z.: Ultrasonic-assisted preparation of complex-shaped ceramic cutting tools by microwave sintering. Ceram. Int. 46(12), 20183–20190 (2020)CrossRef Hong, D., Yuan, J., Yin, Z., Peng, H., Zhu, Z.: Ultrasonic-assisted preparation of complex-shaped ceramic cutting tools by microwave sintering. Ceram. Int. 46(12), 20183–20190 (2020)CrossRef
37.
Zurück zum Zitat Rahaman, M.N.: Ceramic Processing and Sintering, vol. 1. CRC Press (2017) Rahaman, M.N.: Ceramic Processing and Sintering, vol. 1. CRC Press (2017)
38.
Zurück zum Zitat Sharma, N., Alam, S.N., Ray, B.C.: Fundamentals of spark plasma sintering (SPS): an ideal processing technique for fabrication of metal matrix nanocomposites. In: Spark Plasma Sintering of Materials: Advances in Processing and Applications, pp. 21–59 (2019) Sharma, N., Alam, S.N., Ray, B.C.: Fundamentals of spark plasma sintering (SPS): an ideal processing technique for fabrication of metal matrix nanocomposites. In: Spark Plasma Sintering of Materials: Advances in Processing and Applications, pp. 21–59 (2019)
39.
Zurück zum Zitat Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45(4), 322–328 (2002)CrossRef Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45(4), 322–328 (2002)CrossRef
40.
Zurück zum Zitat Dudina, D.V., Mukherjee, A.K.: Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J. Nanomater. 2013, 5–5 (2013)CrossRef Dudina, D.V., Mukherjee, A.K.: Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J. Nanomater. 2013, 5–5 (2013)CrossRef
41.
Zurück zum Zitat Shashanka, R., Chaira, D., Chakravarty, D.: Fabrication of nano-yttria dispersed duplex and ferritic stainless steels by planetary milling followed by spark plasma sintering and non-lubricated sliding wear behaviour study. J. Mater. Sci. Eng. B 6, 111–125 (2016) Shashanka, R., Chaira, D., Chakravarty, D.: Fabrication of nano-yttria dispersed duplex and ferritic stainless steels by planetary milling followed by spark plasma sintering and non-lubricated sliding wear behaviour study. J. Mater. Sci. Eng. B 6, 111–125 (2016)
42.
Zurück zum Zitat Cavaliere, P., Sadeghi, B., Shabani, A.: Spark plasma sintering: process fundamentals. In: Spark Plasma Sintering of Materials: Advances in Processing and Applications, pp. 3–20 (2019) Cavaliere, P., Sadeghi, B., Shabani, A.: Spark plasma sintering: process fundamentals. In: Spark Plasma Sintering of Materials: Advances in Processing and Applications, pp. 3–20 (2019)
43.
Zurück zum Zitat Angelo, P.C., Subramanian, R., Ravisankar, B.: Powder Metallurgy: Science, Technology and Applications. PHI Learning Pvt. Ltd. (2022) Angelo, P.C., Subramanian, R., Ravisankar, B.: Powder Metallurgy: Science, Technology and Applications. PHI Learning Pvt. Ltd. (2022)
44.
Zurück zum Zitat Ageev, S.V., Girshov, V.L.: Hot isostatic pressing of metal powders. Metallurgist 59(7–8), 647–652 (2015)CrossRef Ageev, S.V., Girshov, V.L.: Hot isostatic pressing of metal powders. Metallurgist 59(7–8), 647–652 (2015)CrossRef
45.
Zurück zum Zitat Lü, L., Lai, M.O.: Densification. In: Mechanical Alloying, pp. 173–187. Springer US, Boston, MA (1998) Lü, L., Lai, M.O.: Densification. In: Mechanical Alloying, pp. 173–187. Springer US, Boston, MA (1998)
46.
47.
Zurück zum Zitat Upadhyaya, G.S.: Powder Metallurgy Technology. Cambridge International Science Publishing (1997) Upadhyaya, G.S.: Powder Metallurgy Technology. Cambridge International Science Publishing (1997)
48.
Zurück zum Zitat Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Koopman, M., Free, M.: Powder metallurgy of titanium–past, present, and future. Int. Mater. Rev. 63(7), 407–459 (2018) Fang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Koopman, M., Free, M.: Powder metallurgy of titanium–past, present, and future. Int. Mater. Rev. 63(7), 407–459 (2018)
Metadaten
Titel
Consolidation of Mechanically Alloyed Powders
verfasst von
Trinath Talapaneni
Vatsala Chaturvedi
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6504-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.