Skip to main content

04.07.2024 | Original Paper

Constacyclic codes over \({{\mathbb {Z}}_2[u]}/{\langle u^2\rangle }\times {{\mathbb {Z}}_2[u]}/{\langle u^3\rangle }\) and the MacWilliams identities

verfasst von: Vidya Sagar, Ankit Yadav, Ritumoni Sarma

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we deal with additive codes over the Frobenius ring \({\mathcal {R}}_{2}{\mathcal {R}}_{3}:=\frac{{\mathbb {Z}}_{2}[u]}{\langle u^2 \rangle }\times \frac{{\mathbb {Z}}_{2}[u]}{\langle u^3 \rangle }\). First, we study constacyclic codes over \({\mathcal {R}}_2\) and \({\mathcal {R}}_3\) and find their generator polynomials. With the help of these generator polynomials, we determine the structure of constacyclic codes over \({\mathcal {R}}_2{\mathcal {R}}_3\). We use Gray maps to show that constacyclic codes over \({\mathcal {R}}_{2}{\mathcal {R}}_{3}\) are essentially binary generalized quasi-cyclic codes. Moreover, we obtain a number of binary codes with good parameters from these \({\mathcal {R}}_{2}{\mathcal {R}}_{3}\)-constacyclic codes. Besides, several weight enumerators are computed, and the corresponding MacWilliams identities are established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb{Z} _{2} + u\mathbb{Z}_{2}\) and \(\mathbb{Z} _{2} +u\mathbb{Z} _{2} + u^{2}\mathbb{Z} _{2}\). Des. Codes Cryptogr. 42(3), 273–287 (2007)MathSciNetCrossRef Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb{Z} _{2} + u\mathbb{Z}_{2}\) and \(\mathbb{Z} _{2} +u\mathbb{Z} _{2} + u^{2}\mathbb{Z} _{2}\). Des. Codes Cryptogr. 42(3), 273–287 (2007)MathSciNetCrossRef
2.
Zurück zum Zitat Abualrub, T., Siap, I., Aydin, N.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive cyclic codes. IEEE Trans. Inform. Theory 60(3), 1508–1514 (2014)MathSciNetCrossRef Abualrub, T., Siap, I., Aydin, N.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive cyclic codes. IEEE Trans. Inform. Theory 60(3), 1508–1514 (2014)MathSciNetCrossRef
3.
Zurück zum Zitat Aydogdu, I., Siap, I.: The structure of \(\mathbb{Z} _{2}\mathbb{Z} _{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)MathSciNetCrossRef Aydogdu, I., Siap, I.: The structure of \(\mathbb{Z} _{2}\mathbb{Z} _{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Aydogdu, I., Abualrub, T., Siap, I.: On \(\mathbb{Z} _{2}\mathbb{Z} _{2}[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)MathSciNetCrossRef Aydogdu, I., Abualrub, T., Siap, I.: On \(\mathbb{Z} _{2}\mathbb{Z} _{2}[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)MathSciNetCrossRef
5.
Zurück zum Zitat Aydogdu, I., Abualrub, T., Siap, I.: \(\mathbb{ Z} _{2}\mathbb{Z} _{2}[u]\)-cyclic and constacyclic codes. IEEE Trans. Inform. Theory 63(8), 4883–4893 (2017)MathSciNetCrossRef Aydogdu, I., Abualrub, T., Siap, I.: \(\mathbb{ Z} _{2}\mathbb{Z} _{2}[u]\)-cyclic and constacyclic codes. IEEE Trans. Inform. Theory 63(8), 4883–4893 (2017)MathSciNetCrossRef
6.
Zurück zum Zitat Aydogdu, I., Siap, I., Ten-Valls, R.: On the structure of \(\mathbb{Z} _{2}\mathbb{ Z} _{2}[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017)MathSciNetCrossRef Aydogdu, I., Siap, I., Ten-Valls, R.: On the structure of \(\mathbb{Z} _{2}\mathbb{ Z} _{2}[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017)MathSciNetCrossRef
7.
Zurück zum Zitat Berlekamp, E.R.: Algebraic coding theory mcgraw-hill, vol 8. McGraw-Hill, New York (1968) Berlekamp, E.R.: Algebraic coding theory mcgraw-hill, vol 8. McGraw-Hill, New York (1968)
8.
Zurück zum Zitat Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J., Villanueva, M.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)MathSciNetCrossRef Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J., Villanueva, M.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inform. Theory 62(11), 6348–6354 (2016)MathSciNetCrossRef Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \(\mathbb{ Z} _{2}\mathbb{ Z} _{4}\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inform. Theory 62(11), 6348–6354 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRef Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRef
11.
Zurück zum Zitat Dougherty, S.T.: Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics. Springer (2017)CrossRef Dougherty, S.T.: Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics. Springer (2017)CrossRef
12.
Zurück zum Zitat Esmaeili, M., Yari, S.: Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput. 20(2), 159–173 (2009)MathSciNetCrossRef Esmaeili, M., Yari, S.: Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput. 20(2), 159–173 (2009)MathSciNetCrossRef
13.
15.
Zurück zum Zitat Hammons, A.R., Kumar, P.V., Calderbank, A.R., Slone, N.J.A., Solé, P.: The \(\mathbb{Z} _{4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef Hammons, A.R., Kumar, P.V., Calderbank, A.R., Slone, N.J.A., Solé, P.: The \(\mathbb{Z} _{4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef
17.
Zurück zum Zitat Islam, H., Prakash, O., Solé, P.: \(\mathbb{Z} _{4}\mathbb{Z} _{4}[u]\)-additive cyclic and constacyclic codes. Adv. Math. Comm. 15(4), 737–755 (2021)CrossRef Islam, H., Prakash, O., Solé, P.: \(\mathbb{Z} _{4}\mathbb{Z} _{4}[u]\)-additive cyclic and constacyclic codes. Adv. Math. Comm. 15(4), 737–755 (2021)CrossRef
18.
Zurück zum Zitat Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications, 2nd edn. Cambridge University Press (1994)CrossRef Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications, 2nd edn. Cambridge University Press (1994)CrossRef
19.
Zurück zum Zitat MacWilliams, F.J.: Combinatorial problems of elementary group theory, Ph.D. thesis, Harvard University, (1961) MacWilliams, F.J.: Combinatorial problems of elementary group theory, Ph.D. thesis, Harvard University, (1961)
20.
Zurück zum Zitat MacWilliams, F.J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79–94 (1963)MathSciNetCrossRef MacWilliams, F.J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79–94 (1963)MathSciNetCrossRef
21.
Zurück zum Zitat MacWilliams, F.J., Slone, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MacWilliams, F.J., Slone, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
22.
Zurück zum Zitat Prange, E.: Cyclic error-correcting codes in two symbols, Air force Cambridge research center, (1957) Prange, E.: Cyclic error-correcting codes in two symbols, Air force Cambridge research center, (1957)
23.
Zurück zum Zitat Rifà, J., Pujol, J.: Translation-invariant propelinear codes. IEEE Trans. Inform. Theory 43(2), 590–598 (1997)MathSciNetCrossRef Rifà, J., Pujol, J.: Translation-invariant propelinear codes. IEEE Trans. Inform. Theory 43(2), 590–598 (1997)MathSciNetCrossRef
24.
Zurück zum Zitat Rifà-Pous, H., Rifà, J., Ronquillo, L.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive perfect codes in steganography. Adv. Math. Comm. 5(3), 425–433 (2011)CrossRef Rifà-Pous, H., Rifà, J., Ronquillo, L.: \(\mathbb{Z} _{2}\mathbb{Z} _{4}\)-additive perfect codes in steganography. Adv. Math. Comm. 5(3), 425–433 (2011)CrossRef
25.
Zurück zum Zitat Shi, M., Alahmadi, A., Solé, P.: Codes and Rings: Theory and Practice. Academic Press (2017) Shi, M., Alahmadi, A., Solé, P.: Codes and Rings: Theory and Practice. Academic Press (2017)
26.
Zurück zum Zitat Shiromoto, K.: A basic exact sequence for the Lee and Euclidean weights of linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 295(1–3), 191–200 (1999)MathSciNetCrossRef Shiromoto, K.: A basic exact sequence for the Lee and Euclidean weights of linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 295(1–3), 191–200 (1999)MathSciNetCrossRef
27.
Zurück zum Zitat Tang, Y., Zhu, S., Kai, X.: MacWilliams type identities on the Lee and Euclidean weights for linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 516, 82–92 (2017)MathSciNetCrossRef Tang, Y., Zhu, S., Kai, X.: MacWilliams type identities on the Lee and Euclidean weights for linear codes over \(\mathbb{Z} _{l}\). Linear Algebra Appl. 516, 82–92 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Wang, J., Wei, Y., Sun, Z., Fu, F.W.: MacWilliams-like identities for certain vectorial bent functions, In: 2023 IEEE International Symposium on Information Theory (ISIT), pp. 1402–1407 (2023) Wang, J., Wei, Y., Sun, Z., Fu, F.W.: MacWilliams-like identities for certain vectorial bent functions, In: 2023 IEEE International Symposium on Information Theory (ISIT), pp. 1402–1407 (2023)
29.
Zurück zum Zitat Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)MathSciNetCrossRef Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)MathSciNetCrossRef
30.
Zurück zum Zitat Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb{Z} _{4} + u\mathbb{Z} _{4}\): MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl. 27, 24–40 (2014)MathSciNetCrossRef Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb{Z} _{4} + u\mathbb{Z} _{4}\): MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl. 27, 24–40 (2014)MathSciNetCrossRef
Metadaten
Titel
Constacyclic codes over and the MacWilliams identities
verfasst von
Vidya Sagar
Ankit Yadav
Ritumoni Sarma
Publikationsdatum
04.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00662-6