Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2016

22.09.2016

Constitutive Equations and ANN Approach to Predict the Flow Stress of Ti-6Al-4V Alloy Based on ABI Tests

verfasst von: Fuzeng Wang, Jun Zhao, Ningbo Zhu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow behavior of Ti-6Al-4V alloy was studied by automated ball indentation (ABI) tests in a wide range of temperatures (293, 493, 693, and 873 K) and strain rates (10−6, 10−5, and 10−4 s−1). Based on the experimental true stress-plastic strain data derived from the ABI tests, the Johnson-Cook (JC), Khan-Huang-Liang (KHL) and modified Zerilli-Armstrong (ZA) constitutive models, as well as artificial neural network (ANN) methods, were employed to predict the flow behavior of Ti-6Al-4V. A comparative study was made on the reliability of the four models, and their predictability was evaluated in terms of correlation coefficient (R) and mean absolute percentage error. It is found that the flow stresses of Ti-6Al-4V alloy are more sensitive to temperature than strain rate under current experimental conditions. The predicted flow stresses obtained from JC model and KHL model show much better agreement with the experimental results than modified ZA model. Moreover, the ANN model is much more efficient and shows a higher accuracy in predicting the flow behavior of Ti-6Al-4V alloy than the constitutive equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.S. Khan and S. Yu, Deformation Induced Anisotropic Responses of Ti-6Al-4V Alloy. Part I: Experiments, Int. J. Plast., 2012, 38, p 1–13CrossRef A.S. Khan and S. Yu, Deformation Induced Anisotropic Responses of Ti-6Al-4V Alloy. Part I: Experiments, Int. J. Plast., 2012, 38, p 1–13CrossRef
2.
Zurück zum Zitat T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194CrossRef T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194CrossRef
3.
Zurück zum Zitat N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, J. Alloy. Compd., 2009, 486, p 162–167CrossRef N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, J. Alloy. Compd., 2009, 486, p 162–167CrossRef
4.
Zurück zum Zitat J. Liu, W. Zeng, and Y. Zhu, Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions, J. Mater. Eng. Perform., 2015, 24, p 2140–2150CrossRef J. Liu, W. Zeng, and Y. Zhu, Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions, J. Mater. Eng. Perform., 2015, 24, p 2140–2150CrossRef
5.
Zurück zum Zitat J. Luo, M. Li, X. Li, and Y. Shi, Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables, Mech. Mater., 2010, 42, p 157–165CrossRef J. Luo, M. Li, X. Li, and Y. Shi, Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables, Mech. Mater., 2010, 42, p 157–165CrossRef
6.
Zurück zum Zitat G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983, 54, p 1–7 G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983, 54, p 1–7
7.
Zurück zum Zitat S. Huang and A.S. Khan, On the Use of Electrical-Resistance Metallic Foil Strain Gages for Measuring Large Dynamic Plastic Deformation, Exp. Mech., 1991, 31, p 122–125CrossRef S. Huang and A.S. Khan, On the Use of Electrical-Resistance Metallic Foil Strain Gages for Measuring Large Dynamic Plastic Deformation, Exp. Mech., 1991, 31, p 122–125CrossRef
8.
Zurück zum Zitat A.S. Khan and R. Liang, Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 1999, 15, p 1089–1109CrossRef A.S. Khan and R. Liang, Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 1999, 15, p 1089–1109CrossRef
9.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
10.
Zurück zum Zitat D. Samantaray, S. Mandal, and U. Borah, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef D. Samantaray, S. Mandal, and U. Borah, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef
11.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29, p 1865–1875CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29, p 1865–1875CrossRef
12.
Zurück zum Zitat P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36, p 81–93CrossRef P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36, p 81–93CrossRef
13.
Zurück zum Zitat D.J. Bammann, Modeling Temperature and Strain Rate Dependent Large Deformation of Metals, Appl. Mech. Rev., 1990, 43, p 312–319CrossRef D.J. Bammann, Modeling Temperature and Strain Rate Dependent Large Deformation of Metals, Appl. Mech. Rev., 1990, 43, p 312–319CrossRef
14.
Zurück zum Zitat D.J. Bammann, M.L. Chiesa, and G.C. Johnson, Modeling Large Deformation and Failure in Manufacturing Processes, Theoretical and Applied Mechanics, T. Tatsumi, E. Wannabe, and T. Kambe, Ed., Elsevier Science, Amsterdam, 1996, p 359–376 D.J. Bammann, M.L. Chiesa, and G.C. Johnson, Modeling Large Deformation and Failure in Manufacturing Processes, Theoretical and Applied Mechanics, T. Tatsumi, E. Wannabe, and T. Kambe, Ed., Elsevier Science, Amsterdam, 1996, p 359–376
15.
Zurück zum Zitat Y.B. Guo, Q. Wen, and M.F. Horstemeyer, An Internal State Variable Plasticity-Based Approach to Determine Dynamic Loading History Effects on Material Property in Manufacturing Processes, Int. J. Mech. Sci., 2005, 47, p 1423–1441CrossRef Y.B. Guo, Q. Wen, and M.F. Horstemeyer, An Internal State Variable Plasticity-Based Approach to Determine Dynamic Loading History Effects on Material Property in Manufacturing Processes, Int. J. Mech. Sci., 2005, 47, p 1423–1441CrossRef
16.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef
17.
Zurück zum Zitat O. Sabokpa, A. Zarei-Hanzaki, and H.R. Abedi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef O. Sabokpa, A. Zarei-Hanzaki, and H.R. Abedi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef
18.
Zurück zum Zitat G. Quan, W. Lv, and Y. Mao, Prediction of Flow Stress in a Wide Temperature Range Involving Phase Transformation for As-Cast Ti-6Al-2Zr-1Mo-1V Alloy by Artificial Neural Network, Mater. Des., 2013, 50, p 51–61CrossRef G. Quan, W. Lv, and Y. Mao, Prediction of Flow Stress in a Wide Temperature Range Involving Phase Transformation for As-Cast Ti-6Al-2Zr-1Mo-1V Alloy by Artificial Neural Network, Mater. Des., 2013, 50, p 51–61CrossRef
19.
Zurück zum Zitat N.S. Reddy, Y.H. Lee, and C.H. Park, Prediction of Flow Stress in Ti-6Al-4V Alloy with an Equiaxed α + β Microstructure by Artificial Neural Networks, Mater. Sci. Eng. A, 2008, 492, p 276–282CrossRef N.S. Reddy, Y.H. Lee, and C.H. Park, Prediction of Flow Stress in Ti-6Al-4V Alloy with an Equiaxed α + β Microstructure by Artificial Neural Networks, Mater. Sci. Eng. A, 2008, 492, p 276–282CrossRef
20.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
21.
Zurück zum Zitat Y. Zhu, W. Zeng, and Y. Sun, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50, p 1785–1790CrossRef Y. Zhu, W. Zeng, and Y. Sun, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50, p 1785–1790CrossRef
22.
Zurück zum Zitat W.S. Lee and C.F. Lin, High-Temperature Deformation Behavior of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests, J. Mater. Process. Technol., 1998, 75, p 127–136CrossRef W.S. Lee and C.F. Lin, High-Temperature Deformation Behavior of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests, J. Mater. Process. Technol., 1998, 75, p 127–136CrossRef
23.
Zurück zum Zitat W.S. Lee and C.F. Lin, Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate Under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59CrossRef W.S. Lee and C.F. Lin, Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate Under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59CrossRef
24.
Zurück zum Zitat H.W. Meyer and D.S. Kleponis, Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration, Int. J. Impact Eng., 2001, 26, p 509–521CrossRef H.W. Meyer and D.S. Kleponis, Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration, Int. J. Impact Eng., 2001, 26, p 509–521CrossRef
25.
Zurück zum Zitat S. Seo, O. Min, and H. Yang, Constitutive Equation for Ti-6Al-4V at High Temperatures Measured Using the SHPB Technique, Int. J. Impact Eng., 2005, 31, p 735–754CrossRef S. Seo, O. Min, and H. Yang, Constitutive Equation for Ti-6Al-4V at High Temperatures Measured Using the SHPB Technique, Int. J. Impact Eng., 2005, 31, p 735–754CrossRef
26.
Zurück zum Zitat A.S. Khan, Y.S. Suh, and R. Kazmi, Quasi-static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys, Int. J. Plast., 2004, 20, p 2233–2248CrossRef A.S. Khan, Y.S. Suh, and R. Kazmi, Quasi-static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys, Int. J. Plast., 2004, 20, p 2233–2248CrossRef
27.
Zurück zum Zitat S. Nemat-Nasser, W.G. Guo, and V.F. Nesterenko, Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling, Mech. Mater., 2001, 33, p 425–439CrossRef S. Nemat-Nasser, W.G. Guo, and V.F. Nesterenko, Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling, Mech. Mater., 2001, 33, p 425–439CrossRef
28.
Zurück zum Zitat X. Shi, W. Zeng, and Y. Sun, Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2015, 24, p 1754–1762CrossRef X. Shi, W. Zeng, and Y. Sun, Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2015, 24, p 1754–1762CrossRef
29.
Zurück zum Zitat J. Xiao, D.S. Li, and X.Q. Li, Constitutive Modeling and Microstructure Change of Ti-6Al-4V During the Hot Tensile Deformation, J. Alloy. Compd., 2012, 541, p 346–352CrossRef J. Xiao, D.S. Li, and X.Q. Li, Constitutive Modeling and Microstructure Change of Ti-6Al-4V During the Hot Tensile Deformation, J. Alloy. Compd., 2012, 541, p 346–352CrossRef
30.
Zurück zum Zitat J. Cai, F. Li, and T. Liu, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef J. Cai, F. Li, and T. Liu, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef
31.
Zurück zum Zitat J. Cai, K. Wang, and P. Zhai, A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2015, 24, p 32–44CrossRef J. Cai, K. Wang, and P. Zhai, A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2015, 24, p 32–44CrossRef
32.
Zurück zum Zitat Y. Niu, M. Li, and H. Hou, High-Temperature Deformation Behavior of Ti-6Al-4V Alloy without and with Hydrogenation Content of 0.27 wt.%, J. Mater. Eng. Perform., 2010, 19, p 59–63CrossRef Y. Niu, M. Li, and H. Hou, High-Temperature Deformation Behavior of Ti-6Al-4V Alloy without and with Hydrogenation Content of 0.27 wt.%, J. Mater. Eng. Perform., 2010, 19, p 59–63CrossRef
33.
Zurück zum Zitat A.S. Hamada, F.M. Haggag, and D.A. Porter, Non-Destructive Determination of the Yield Strength and Flow Properties of High-Manganese Twinning-Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 558, p 766–770CrossRef A.S. Hamada, F.M. Haggag, and D.A. Porter, Non-Destructive Determination of the Yield Strength and Flow Properties of High-Manganese Twinning-Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 558, p 766–770CrossRef
34.
Zurück zum Zitat F. Wang, J. Zhao, and N. Zhu, A Comparative Study on Johnson-Cook Constitutive Modeling for Ti-6Al-4V Alloy Using Automated Ball Indentation (ABI) Technique, J. Alloy. Compd., 2015, 633, p 220–228CrossRef F. Wang, J. Zhao, and N. Zhu, A Comparative Study on Johnson-Cook Constitutive Modeling for Ti-6Al-4V Alloy Using Automated Ball Indentation (ABI) Technique, J. Alloy. Compd., 2015, 633, p 220–228CrossRef
35.
Zurück zum Zitat M.J. Donachie, Jr., Source Book, Titanium and Titanium Alloys, American Society for Metals, Metals Park, 1982, p 3–19 M.J. Donachie, Jr., Source Book, Titanium and Titanium Alloys, American Society for Metals, Metals Park, 1982, p 3–19
36.
Zurück zum Zitat M.J. Donachie, Jr., Titanium: A Technical Guide, 2nd ed., ASTM international, Ohio, 2000 M.J. Donachie, Jr., Titanium: A Technical Guide, 2nd ed., ASTM international, Ohio, 2000
37.
Zurück zum Zitat F.M. Haggag, Field Indentation Microprobe for Structural Integrity Evaluation, U.S. Patent No. 4852397, 1989 F.M. Haggag, Field Indentation Microprobe for Structural Integrity Evaluation, U.S. Patent No. 4852397, 1989
38.
Zurück zum Zitat G. Das, S. Ghosh, S.C. Bose, and S. Ghosh, Use of Ball Indentation Technique to Evaluate Room Temperature Mechanical Properties of a Gas Turbine Blade, Mater. Sci. Eng. A, 2006, 424, p 326–332CrossRef G. Das, S. Ghosh, S.C. Bose, and S. Ghosh, Use of Ball Indentation Technique to Evaluate Room Temperature Mechanical Properties of a Gas Turbine Blade, Mater. Sci. Eng. A, 2006, 424, p 326–332CrossRef
39.
Zurück zum Zitat G. Das, M. Das, S. Ghosh, P. Dubey, and A.K. Ray, Effect of Aging on Mechanical Properties of 6063 Al-Alloy Using Instrumented Ball Indentation Technique, Mater. Sci. Eng. A, 2010, 527, p 1590–1594CrossRef G. Das, M. Das, S. Ghosh, P. Dubey, and A.K. Ray, Effect of Aging on Mechanical Properties of 6063 Al-Alloy Using Instrumented Ball Indentation Technique, Mater. Sci. Eng. A, 2010, 527, p 1590–1594CrossRef
40.
Zurück zum Zitat F.M. Haggag and R.K. Nanstad, Innovative Approaches to Irradiation Damage and Failure Analysis, D.L. Marriot, T.R. Mager, and W.H. Bamford, Ed., ASME, New York, 1989, p 101–109 F.M. Haggag and R.K. Nanstad, Innovative Approaches to Irradiation Damage and Failure Analysis, D.L. Marriot, T.R. Mager, and W.H. Bamford, Ed., ASME, New York, 1989, p 101–109
41.
Zurück zum Zitat D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951 D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951
42.
Zurück zum Zitat F.M. Haggag, R.K. Nanstad, J.T. Hutton, D.L. Thomas, and R.L. Swain, Use of Automated Ball Indentation Testing to Measure Flow Properties and Estimate Fracture Toughness in Metallic Materials, ASTM STP, 1990, 1092, p 188–208 F.M. Haggag, R.K. Nanstad, J.T. Hutton, D.L. Thomas, and R.L. Swain, Use of Automated Ball Indentation Testing to Measure Flow Properties and Estimate Fracture Toughness in Metallic Materials, ASTM STP, 1990, 1092, p 188–208
43.
Zurück zum Zitat T. Özel and E. Zeren, Determination of Work Material Flow Stress and Friction for FEA of Machining Using Orthogonal Cutting Tests, J. Mater. Process. Technol., 2004, 153, p 1019–1025CrossRef T. Özel and E. Zeren, Determination of Work Material Flow Stress and Friction for FEA of Machining Using Orthogonal Cutting Tests, J. Mater. Process. Technol., 2004, 153, p 1019–1025CrossRef
44.
Zurück zum Zitat N. Kotkunde, A.D. Deole, and A.K. Gupta, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999–1005CrossRef N. Kotkunde, A.D. Deole, and A.K. Gupta, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999–1005CrossRef
45.
Zurück zum Zitat J. Liu, H. Chang, and T.Y. Hsu, Prediction of the Flow Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205CrossRef J. Liu, H. Chang, and T.Y. Hsu, Prediction of the Flow Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205CrossRef
46.
Zurück zum Zitat Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef
Metadaten
Titel
Constitutive Equations and ANN Approach to Predict the Flow Stress of Ti-6Al-4V Alloy Based on ABI Tests
verfasst von
Fuzeng Wang
Jun Zhao
Ningbo Zhu
Publikationsdatum
22.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2337-4

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Engineering and Performance 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.