Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2016

10.05.2016

Constitutive Equations and Flow Behavior of an As-Extruded AZ31 Magnesium Alloy Under Large Strain Condition

verfasst von: Yuanyuan Dong, Cunsheng Zhang, Xing Lu, Cuixue Wang, Guoqun Zhao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A reasonable constitutive model is the key to achieving the accurate numerical simulation of magnesium alloy extrusion process. Based on the hot compression tests of the as-extruded AZ31 magnesium alloy, the strain-compensated Arrhenius equation, the constitutive equation taking into account dynamic recovery (DRV) and dynamic recrystallization (DRX), and the modified Fields-Backofen equation (FB) are established to describe the deformation behavior of this alloy under large strain condition (strain level greater than 1.0) and wide strain rate range (0.01 to 10 s−1), respectively. Then material parameters in each constitutive model are determined by linear fitting method. The comparison of these three kinds of equations shows that the strain-compensated Arrhenius model provides the best prediction of flow stress, and the calculated value of correlation coefficient (R) is the highest as 0.9945 and the average absolute relative error (AARE) is the lowest as 3.11%. The constitutive equation with DRV + DRX can also predict flow stress accurately, and its values of R and AARE are 0.9920 and 4.41%, respectively. However, compared to the other two constitutive equations, the modified FB equation does not give good description of hot deformation behavior for this magnesium alloy. Finally, the advantages and drawbacks of these three kinds of constitutive models are discussed and compared. Therefore, this work could provide theoretical guidelines for investigating hot deformation behavior of wrought magnesium alloys and determining the appropriate extrusion process parameters under large strain condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Liu, S.L. Cai, and L.H. Dai, A New Method for Grain Refinement in Magnesium Alloy: High Speed Extrusion Machining, Mater. Sci. Eng. A, 2016, 651, p 878–885CrossRef Y. Liu, S.L. Cai, and L.H. Dai, A New Method for Grain Refinement in Magnesium Alloy: High Speed Extrusion Machining, Mater. Sci. Eng. A, 2016, 651, p 878–885CrossRef
2.
Zurück zum Zitat C.J. Bettles and M.A. Gibson, Current Wrought Magnesium Alloys: Strengths and Weaknesses, JOM, 2005, 57, p 46–49CrossRef C.J. Bettles and M.A. Gibson, Current Wrought Magnesium Alloys: Strengths and Weaknesses, JOM, 2005, 57, p 46–49CrossRef
3.
Zurück zum Zitat L.W. Lu, T.M. Liu, J. Chen, and Z.C. Wang, Microstructure and Corrosion Behavior of AZ31 Alloys Prepared by Dual Directional Extrusion, Mater. Des., 2012, 36, p 687–693CrossRef L.W. Lu, T.M. Liu, J. Chen, and Z.C. Wang, Microstructure and Corrosion Behavior of AZ31 Alloys Prepared by Dual Directional Extrusion, Mater. Des., 2012, 36, p 687–693CrossRef
4.
Zurück zum Zitat K.S. Choi, E.I. Barker, G. Cheng, X. Sun, J.H. Forsmark, and M. Li, Predicting Stress vs Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution, SAE Int., 2016, 01, p 0290 K.S. Choi, E.I. Barker, G. Cheng, X. Sun, J.H. Forsmark, and M. Li, Predicting Stress vs Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution, SAE Int., 2016, 01, p 0290
5.
Zurück zum Zitat G. Cheng, E.I. Barker, E.V. Stephens, K.S. Choi, X. Sun (2016) Quantifying Grain Level Stress-Strain Behavior for AM40 Via Instrumented Microindentation. MRS Adv. p 1–12 G. Cheng, E.I. Barker, E.V. Stephens, K.S. Choi, X. Sun (2016) Quantifying Grain Level Stress-Strain Behavior for AM40 Via Instrumented Microindentation. MRS Adv. p 1–12
6.
Zurück zum Zitat A. Jäger, V. Gärtnerova, and K. Tesař, Microstructure and Anisotropy of the Mechanical Properties in Commercially Pure Titanium After Equal Channel Angular Pressing with Back Pressure at Room Temperature, Mater. Sci. Eng. A, 2015, 644, p 114–120CrossRef A. Jäger, V. Gärtnerova, and K. Tesař, Microstructure and Anisotropy of the Mechanical Properties in Commercially Pure Titanium After Equal Channel Angular Pressing with Back Pressure at Room Temperature, Mater. Sci. Eng. A, 2015, 644, p 114–120CrossRef
7.
Zurück zum Zitat S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54CrossRef S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54CrossRef
8.
Zurück zum Zitat M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park, Characterization of Microstructure and Deformation Texture During Equal Channel Angular Pressing of Al-Zn-Mg-Cu Alloy, J Alloys Compd., 2013, 576, p 350–357CrossRef M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park, Characterization of Microstructure and Deformation Texture During Equal Channel Angular Pressing of Al-Zn-Mg-Cu Alloy, J Alloys Compd., 2013, 576, p 350–357CrossRef
9.
Zurück zum Zitat Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra, Ultrafine-Grained Al-0.2Sc-0.1Zr Alloy: The Mechanistic Contribution of Nano-sized Precipitates on Grain Refinement During the Novel Process of Accumulative Continuous Extrusion, Acta Mater., 2015, 100, p 247–255CrossRef Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra, Ultrafine-Grained Al-0.2Sc-0.1Zr Alloy: The Mechanistic Contribution of Nano-sized Precipitates on Grain Refinement During the Novel Process of Accumulative Continuous Extrusion, Acta Mater., 2015, 100, p 247–255CrossRef
10.
Zurück zum Zitat Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, X.L. Liu, Z.J. Wang, and Y.T. Liu, The Effect of Double Extrusion on the Microstructure and Mechanical Properties of Mg-Zn-Ca Alloy, Mater. Sci. Eng. A, 2013, 583, p 69–77CrossRef Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, X.L. Liu, Z.J. Wang, and Y.T. Liu, The Effect of Double Extrusion on the Microstructure and Mechanical Properties of Mg-Zn-Ca Alloy, Mater. Sci. Eng. A, 2013, 583, p 69–77CrossRef
11.
Zurück zum Zitat Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Microstructures and Mechanical Properties of As-Cast and As-Extruded Mg-4.50Zn-1.13Ca (wt%) Alloys, Mater. Sci. Eng. A, 2013, 576, p 6–13CrossRef Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Microstructures and Mechanical Properties of As-Cast and As-Extruded Mg-4.50Zn-1.13Ca (wt%) Alloys, Mater. Sci. Eng. A, 2013, 576, p 6–13CrossRef
12.
Zurück zum Zitat Y.Z. Wu, H.G. Yan, J.H. Chen, S.Q. Zhu, B. Su, and P.L. Zeng, Hot Deformation Behavior and Microstructure Evolution of ZK21 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 3670–3675CrossRef Y.Z. Wu, H.G. Yan, J.H. Chen, S.Q. Zhu, B. Su, and P.L. Zeng, Hot Deformation Behavior and Microstructure Evolution of ZK21 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 3670–3675CrossRef
13.
Zurück zum Zitat L.F. Liu and H.L. Ding, Study of the Plastic Flow Behaviors of AZ91 Magnesium Alloy During Thermomechanical Processes, J Alloys Compd., 2009, 484, p 949–956CrossRef L.F. Liu and H.L. Ding, Study of the Plastic Flow Behaviors of AZ91 Magnesium Alloy During Thermomechanical Processes, J Alloys Compd., 2009, 484, p 949–956CrossRef
14.
Zurück zum Zitat G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059CrossRef G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059CrossRef
15.
Zurück zum Zitat H.Y. Wu, J.C. Yang, F.J. Zhu, and C.T. Wu, Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Mater. Sci. Eng. A, 2013, 574, p 17–24CrossRef H.Y. Wu, J.C. Yang, F.J. Zhu, and C.T. Wu, Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Mater. Sci. Eng. A, 2013, 574, p 17–24CrossRef
16.
Zurück zum Zitat D.H. Yu, Modeling High-Temperature Tensile Deformation Behavior of AZ31B Magnesium Alloy Considering Strain Effects, Mater. Des., 2013, 51, p 323–330CrossRef D.H. Yu, Modeling High-Temperature Tensile Deformation Behavior of AZ31B Magnesium Alloy Considering Strain Effects, Mater. Des., 2013, 51, p 323–330CrossRef
17.
Zurück zum Zitat Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J Alloys Compd., 2015, 678, p 215–222CrossRef Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J Alloys Compd., 2015, 678, p 215–222CrossRef
18.
Zurück zum Zitat Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan, Modeling of Flow Stress for Magnesium Alloy During Hot Deformation, Mater. Sci. Eng. A, 2010, 527, p 2790–2797CrossRef Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan, Modeling of Flow Stress for Magnesium Alloy During Hot Deformation, Mater. Sci. Eng. A, 2010, 527, p 2790–2797CrossRef
19.
Zurück zum Zitat H. Takuda, T. Morishita, T. Kinoshita, and N. Shirakawa, Modelling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures, J. Mater. Process. Technol., 2005, 164–165, p 1258–1262CrossRef H. Takuda, T. Morishita, T. Kinoshita, and N. Shirakawa, Modelling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures, J. Mater. Process. Technol., 2005, 164–165, p 1258–1262CrossRef
20.
Zurück zum Zitat L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869CrossRef
21.
Zurück zum Zitat X. Shang, J. Zhou, X. Wang, and Y. Luo, Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J Alloys Compd., 2015, 629, p 155–161CrossRef X. Shang, J. Zhou, X. Wang, and Y. Luo, Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J Alloys Compd., 2015, 629, p 155–161CrossRef
22.
Zurück zum Zitat R. Bhattacharya, Y.J. Lan, B.P. Wynne, B. Davis, and W.M. Rainforth, Constitutive Equations of Flow Stress of Magnesium AZ31 Under Dynamically Recrystallizing Conditions, J. Mater. Process. Tech., 2014, 214, p 1408–1417CrossRef R. Bhattacharya, Y.J. Lan, B.P. Wynne, B. Davis, and W.M. Rainforth, Constitutive Equations of Flow Stress of Magnesium AZ31 Under Dynamically Recrystallizing Conditions, J. Mater. Process. Tech., 2014, 214, p 1408–1417CrossRef
23.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
24.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef
25.
Zurück zum Zitat R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143CrossRef
26.
Zurück zum Zitat N.Q. Peng, G.B. Tang, and Z.D. Liu, Correcting Method of Flow Stress Curve for Hot Compression, Hot Working Technol., 2012, 41, p 12–15 N.Q. Peng, G.B. Tang, and Z.D. Liu, Correcting Method of Flow Stress Curve for Hot Compression, Hot Working Technol., 2012, 41, p 12–15
27.
Zurück zum Zitat J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24 J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24
28.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef
29.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257CrossRef
30.
Zurück zum Zitat Y.Y. Dong, C.S. Zhang, G.Q. Zhao, Y.J. Guan, A.J. Gao, and W.C. Sun, Constitutive Equation and Processing Maps of an Al-Mg-Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles, Mater. Des., 2016, 92, p 983–997 Y.Y. Dong, C.S. Zhang, G.Q. Zhao, Y.J. Guan, A.J. Gao, and W.C. Sun, Constitutive Equation and Processing Maps of an Al-Mg-Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles, Mater. Des., 2016, 92, p 983–997
31.
Zurück zum Zitat Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef
32.
Zurück zum Zitat Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef
33.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef
34.
Zurück zum Zitat D.S. Fields and W.A. Bachofen, Determination of Strain Hardening Characteristics by Torsion Testing, ASTM Proc. Am. Soc. Test. Mater., 1957, 57, p 1259–1272 D.S. Fields and W.A. Bachofen, Determination of Strain Hardening Characteristics by Torsion Testing, ASTM Proc. Am. Soc. Test. Mater., 1957, 57, p 1259–1272
35.
Zurück zum Zitat Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208, p 29–34CrossRef Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208, p 29–34CrossRef
Metadaten
Titel
Constitutive Equations and Flow Behavior of an As-Extruded AZ31 Magnesium Alloy Under Large Strain Condition
verfasst von
Yuanyuan Dong
Cunsheng Zhang
Xing Lu
Cuixue Wang
Guoqun Zhao
Publikationsdatum
10.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2092-6

Weitere Artikel der Ausgabe 6/2016

Journal of Materials Engineering and Performance 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.