Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2019

11.12.2018

Constitutive Model Over Wide Temperature Range and Considering Negative-to-Positive Strain Rate Sensitivity for As-Quenched AA2219 Sheet

verfasst von: Z. X. Li, M. Zhan, X. G. Fan, F. Ma, J. W. Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An accurate constitutive model over a wide temperature range is very important for research on the quenching process. In this study, uniaxial tension tests of an as-quenched AA2219 aluminum alloy sheet were first conducted at different strain rates (10−3-10−1 s−1) over a wide temperature range (298-773 K). The tension results showed an increase in the strain rate sensitivity (SRS) from negative to positive with temperature. Different increasing trends were observed in the low-temperature range (298-473 K), high-temperature range (573-773 K), and transitive-temperature range (473-573 K). In order to more accurately capture these variations in the SRS, the existing function that considers the negative-to-positive SRS was modified by adding a coupling effect term for the temperature and strain rate. The temperature sensitivity increased linearly and exponentially with the strain and temperature, respectively, and also had obviously different tendencies in the low- and high-temperature ranges. The new coupling effect term for the temperature and strain was constructed to consider these effects. Finally, a phenomenological constitutive model was proposed, in which the negative-to-positive SRS and the coupling effects of the strain and temperature were considered. This constitutive model could predict the flow stress of the as-quenched AA2219 with very good correlation over a wide temperature range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, and J.F. Watts, Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% NaCl Solution, Corros. Sci., 2010, 52, p 2855–2866CrossRef R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, and J.F. Watts, Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% NaCl Solution, Corros. Sci., 2010, 52, p 2855–2866CrossRef
2.
Zurück zum Zitat W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219-T6 Aluminum Alloy, Mater. Des., 2009, 30, p 3460–3467CrossRef W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219-T6 Aluminum Alloy, Mater. Des., 2009, 30, p 3460–3467CrossRef
3.
Zurück zum Zitat M. Koç, J. Culp, and T. Altan, Prediction of Residual Stresses in Quenched Aluminum Blocks and Their Reduction Through Cold Working Processes, J. Mater. Process. Technol., 2006, 174, p 342–354CrossRef M. Koç, J. Culp, and T. Altan, Prediction of Residual Stresses in Quenched Aluminum Blocks and Their Reduction Through Cold Working Processes, J. Mater. Process. Technol., 2006, 174, p 342–354CrossRef
4.
Zurück zum Zitat X. Yang, J. Zhu, Z. Lai, Y. Liu, D. He, and Z. Nong, Finite Element Analysis of Quenching Temperature Field, Residual Stress and Distortion in A357 Aluminum Alloy Large Complicated Thin-Wall Workpieces, Trans. Nonferr. Met. Soc. China, 2013, 23, p 1751–1760CrossRef X. Yang, J. Zhu, Z. Lai, Y. Liu, D. He, and Z. Nong, Finite Element Analysis of Quenching Temperature Field, Residual Stress and Distortion in A357 Aluminum Alloy Large Complicated Thin-Wall Workpieces, Trans. Nonferr. Met. Soc. China, 2013, 23, p 1751–1760CrossRef
5.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
6.
Zurück zum Zitat A.V.D. Beukel, Theory of the Effect of Dynamic Strain Aging on Mechanical Properties, Phys. Stat. Sol., 1975, 30, p 197–206CrossRef A.V.D. Beukel, Theory of the Effect of Dynamic Strain Aging on Mechanical Properties, Phys. Stat. Sol., 1975, 30, p 197–206CrossRef
7.
Zurück zum Zitat J.M. Robinson and M.P. Shaw, Microstructural and Mechanical Influences on Dynamic Strain Aging Phenomena, Int. Mater. Rev., 1994, 39, p 113–122CrossRef J.M. Robinson and M.P. Shaw, Microstructural and Mechanical Influences on Dynamic Strain Aging Phenomena, Int. Mater. Rev., 1994, 39, p 113–122CrossRef
8.
Zurück zum Zitat A.S. Khan and H. Liu, Variable Strain Rate Sensitivity in an Aluminum Alloy: Response and Constitutive Modeling, Int. J. Plast., 2012, 36, p 1–14CrossRef A.S. Khan and H. Liu, Variable Strain Rate Sensitivity in an Aluminum Alloy: Response and Constitutive Modeling, Int. J. Plast., 2012, 36, p 1–14CrossRef
9.
Zurück zum Zitat R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng. A, 2005, 390, p 334–343CrossRef R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng. A, 2005, 390, p 334–343CrossRef
10.
Zurück zum Zitat W.A. Curtin, D.L. Olmsted, and L.G. Hector, A Predictive Mechanism for Dynamic Strain Ageing in Aluminium-Magnesium Alloys, Nat. Mater., 2006, 5, p 875CrossRef W.A. Curtin, D.L. Olmsted, and L.G. Hector, A Predictive Mechanism for Dynamic Strain Ageing in Aluminium-Magnesium Alloys, Nat. Mater., 2006, 5, p 875CrossRef
11.
Zurück zum Zitat F. Kabirian, A.S. Khan, and A. Pandey, Negative to Positive Strain Rate Sensitivity in 5xxx Series Aluminum Alloys: Experiment and Constitutive Modeling, Int. J. Plast., 2014, 55, p 232–246CrossRef F. Kabirian, A.S. Khan, and A. Pandey, Negative to Positive Strain Rate Sensitivity in 5xxx Series Aluminum Alloys: Experiment and Constitutive Modeling, Int. J. Plast., 2014, 55, p 232–246CrossRef
12.
Zurück zum Zitat M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, and K. Marthinsen, Combined Effect of Deformation and Artificial Aging on Mechanical Properties of Al-Mg-Si Alloy, Trans. Nonferr. Met. Soc. China, 2012, 22, p 1824–1830CrossRef M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, and K. Marthinsen, Combined Effect of Deformation and Artificial Aging on Mechanical Properties of Al-Mg-Si Alloy, Trans. Nonferr. Met. Soc. China, 2012, 22, p 1824–1830CrossRef
13.
Zurück zum Zitat W.S. Lee and C.F. Lin, Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate Under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59CrossRef W.S. Lee and C.F. Lin, Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate Under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59CrossRef
14.
Zurück zum Zitat A.A Morrone, Strain Rate and Temperature Effects During Dynamic Deformation of Polyscrytalline and Monicrystalline High Purity Aluminum Including TEM Stydies. Ph.D. Thesis, Brown University, 1986, p. 34 A.A Morrone, Strain Rate and Temperature Effects During Dynamic Deformation of Polyscrytalline and Monicrystalline High Purity Aluminum Including TEM Stydies. Ph.D. Thesis, Brown University, 1986, p. 34
15.
Zurück zum Zitat U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273CrossRef U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273CrossRef
16.
Zurück zum Zitat W. Wang, G. Wang, Y. Hu, G. Guo, T. Zhou, and Y. Rong, Temperature-Dependent Constitutive Behavior with Consideration of Microstructure Evolution for As-Quenched Al-Cu-Mn Alloy, Mater. Sci. Eng. A, 2016, 678, p 85–92CrossRef W. Wang, G. Wang, Y. Hu, G. Guo, T. Zhou, and Y. Rong, Temperature-Dependent Constitutive Behavior with Consideration of Microstructure Evolution for As-Quenched Al-Cu-Mn Alloy, Mater. Sci. Eng. A, 2016, 678, p 85–92CrossRef
17.
Zurück zum Zitat M.L. Newman, Modeling the Behavior of a Type-319 Aluminum Alloy During Quenching. Ph.D. Thesis, University of Illinois Urbana-Champaign (2002) M.L. Newman, Modeling the Behavior of a Type-319 Aluminum Alloy During Quenching. Ph.D. Thesis, University of Illinois Urbana-Champaign (2002)
18.
Zurück zum Zitat A. Rusinek and J.A. Rodríguez-Martínez, Thermo-Viscoplastic Constitutive Relation for Aluminium Alloys, Modeling of Negative Strain Rate Sensitivity and Viscous Drag Effects, Mater. Des., 2009, 30, p 4377–4390CrossRef A. Rusinek and J.A. Rodríguez-Martínez, Thermo-Viscoplastic Constitutive Relation for Aluminium Alloys, Modeling of Negative Strain Rate Sensitivity and Viscous Drag Effects, Mater. Des., 2009, 30, p 4377–4390CrossRef
19.
Zurück zum Zitat P.G. Mccormigk, A Model for the Portevin–Le Chatelier Effect in Substitutional Alloys, Acta Metall., 1972, 20, p 351–354CrossRef P.G. Mccormigk, A Model for the Portevin–Le Chatelier Effect in Substitutional Alloys, Acta Metall., 1972, 20, p 351–354CrossRef
20.
Zurück zum Zitat H. Aboulfadl, J. Deges, P. Choi, and D. Raabe, Dynamic Strain Aging Studied at the Atomic Scale, Acta Metall., 2015, 86, p 34–42 H. Aboulfadl, J. Deges, P. Choi, and D. Raabe, Dynamic Strain Aging Studied at the Atomic Scale, Acta Metall., 2015, 86, p 34–42
21.
Zurück zum Zitat R.C. Picu, A Mechanism for the Negative Strain-Rate Sensitivity of Dilute Solid Solutions, Acta Mater., 2004, 52, p 3447–3458CrossRef R.C. Picu, A Mechanism for the Negative Strain-Rate Sensitivity of Dilute Solid Solutions, Acta Mater., 2004, 52, p 3447–3458CrossRef
22.
Zurück zum Zitat H. Shin and J.B. Kim, A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes, J. Eng. Mater. Technol. Trans., 2010, 132, p 179–181 H. Shin and J.B. Kim, A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes, J. Eng. Mater. Technol. Trans., 2010, 132, p 179–181
23.
Zurück zum Zitat W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 4th ed., Cambridge University Press, New York, 1983, p 36 W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 4th ed., Cambridge University Press, New York, 1983, p 36
24.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
25.
Zurück zum Zitat D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated Temperature Flow Behaviour in a Titanium Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated Temperature Flow Behaviour in a Titanium Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6CrossRef
26.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984CrossRef
Metadaten
Titel
Constitutive Model Over Wide Temperature Range and Considering Negative-to-Positive Strain Rate Sensitivity for As-Quenched AA2219 Sheet
verfasst von
Z. X. Li
M. Zhan
X. G. Fan
F. Ma
J. W. Wang
Publikationsdatum
11.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3788-6

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Engineering and Performance 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.