Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2019

22.01.2019

Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot compressive tests of 6082 aluminum alloy were conducted on a Gleeble-3500 thermomechanical simulator at temperature ranges of 380-530 °C and strain rate range of 0.01-10 s−1. The constitutive analysis and microstructural evolution of the alloy were investigated. It was indicated that the peak stress increased with increasing strain rate and decreasing temperature. Dynamic recovery and dynamic recrystallization lead to the softening behavior of the alloy. In order to characterize the flow behavior of this alloy, some models were established based on the experimental data including the phenomenological Arrhenius-type model, the physically based Estrin and Mecking (EM) model for work hardening and dynamic recovery, and the EM model, which was combined with the Avrami equation for dynamic recrystallization. An artificial neural network model was also established to predict the flow stress. The results indicate that the Arrhenius-type model is more simple and more efficient than the EM + Avrami model. Moreover, the well-trained ANN model has the best predicting performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Hirsch, Aluminium Alloys for Automotive Application, Mater. Sci. Forum, 1997, 242, p 33–50CrossRef J. Hirsch, Aluminium Alloys for Automotive Application, Mater. Sci. Forum, 1997, 242, p 33–50CrossRef
2.
Zurück zum Zitat J.H. Chen, E. Costan, M. Huis, Q. Xu, and H.W. Zandbergen, Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys, Science, 2006, 312, p 416–419CrossRef J.H. Chen, E. Costan, M. Huis, Q. Xu, and H.W. Zandbergen, Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys, Science, 2006, 312, p 416–419CrossRef
3.
Zurück zum Zitat L.P. Troeger and E.A. Starke Jr., Microstructural and Mechanical Characterization of a Superplastic 6xxx Aluminum Alloy, Mater. Sci. Eng., A, 2000, 277, p 102–113CrossRef L.P. Troeger and E.A. Starke Jr., Microstructural and Mechanical Characterization of a Superplastic 6xxx Aluminum Alloy, Mater. Sci. Eng., A, 2000, 277, p 102–113CrossRef
4.
Zurück zum Zitat B. Mirzakhani and Y. Payandeh, Combination of Sever Plastic Deformation and Precipitation Hardening Processes Affecting the Mechanical Properties in Al-Mg-Si Alloy, Mater. Des., 2015, 68, p 127–133CrossRef B. Mirzakhani and Y. Payandeh, Combination of Sever Plastic Deformation and Precipitation Hardening Processes Affecting the Mechanical Properties in Al-Mg-Si Alloy, Mater. Des., 2015, 68, p 127–133CrossRef
5.
Zurück zum Zitat C.N. Panagopoulos, E.P. Georgiou, and A.G. Gavras, Corrosion and Wear of 6082 Aluminum Alloy, Tribol. Int., 2009, 42, p 886–889CrossRef C.N. Panagopoulos, E.P. Georgiou, and A.G. Gavras, Corrosion and Wear of 6082 Aluminum Alloy, Tribol. Int., 2009, 42, p 886–889CrossRef
6.
Zurück zum Zitat A.R. Eivani and J. Zhou, Application of Physical and Numerical Simulations for Interpretation of Peripheral Coarse Grain Structure During Hot Extrusion of AA7020 Aluminum Alloy, J. Alloys Compd., 2017, 725, p 41–53CrossRef A.R. Eivani and J. Zhou, Application of Physical and Numerical Simulations for Interpretation of Peripheral Coarse Grain Structure During Hot Extrusion of AA7020 Aluminum Alloy, J. Alloys Compd., 2017, 725, p 41–53CrossRef
7.
Zurück zum Zitat N. Kumar, S. Goel, R. Jayaganthan, and G.M. Owolabi, The Influence of Metallurgical Factors on Low Cycle Fatigue Behavior of Ultra-Fine Grained 6082 Al Alloy, Int. J. Fatigue, 2018, 110, p 130–143CrossRef N. Kumar, S. Goel, R. Jayaganthan, and G.M. Owolabi, The Influence of Metallurgical Factors on Low Cycle Fatigue Behavior of Ultra-Fine Grained 6082 Al Alloy, Int. J. Fatigue, 2018, 110, p 130–143CrossRef
8.
Zurück zum Zitat V. Kumar and D. Kumar, Investigation of Tensile Behaviour of Cryorolled and Room Temperature Rolled 6082 Al Alloy, Mater. Sci. Eng., A, 2017, 691, p 211–217CrossRef V. Kumar and D. Kumar, Investigation of Tensile Behaviour of Cryorolled and Room Temperature Rolled 6082 Al Alloy, Mater. Sci. Eng., A, 2017, 691, p 211–217CrossRef
9.
Zurück zum Zitat X. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao, Hot Deformation Behavior and Optimization of Processing Parameters of a Typical High-Strength Al-Mg-Si Alloy, Mater. Sci., 2016, 90, p 1151–1158 X. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao, Hot Deformation Behavior and Optimization of Processing Parameters of a Typical High-Strength Al-Mg-Si Alloy, Mater. Sci., 2016, 90, p 1151–1158
10.
Zurück zum Zitat G. Chunlei, X. Yongdong, and W. Mengjun, Prediction of the Flow Stress of Al6061 at Hot Deformation Conditions, Mater. Sci. Eng., A, 2011, 528, p 4199–4203CrossRef G. Chunlei, X. Yongdong, and W. Mengjun, Prediction of the Flow Stress of Al6061 at Hot Deformation Conditions, Mater. Sci. Eng., A, 2011, 528, p 4199–4203CrossRef
11.
Zurück zum Zitat L. De Pari Jr. and W.Z. Misiolek, Theoretical Predictions and Experimental Verification of Surface Grain Structure Evolution for AA6061 During Hot Rolling, Acta Mater., 2008, 56, p 6174–6185CrossRef L. De Pari Jr. and W.Z. Misiolek, Theoretical Predictions and Experimental Verification of Surface Grain Structure Evolution for AA6061 During Hot Rolling, Acta Mater., 2008, 56, p 6174–6185CrossRef
12.
Zurück zum Zitat M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef
13.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
14.
Zurück zum Zitat D. Trimble and G.E.O. Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef D. Trimble and G.E.O. Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef
15.
Zurück zum Zitat L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Sci., 2013, 47, p 737–745 L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Sci., 2013, 47, p 737–745
16.
Zurück zum Zitat H. Zhang, G. Chen, Q. Chen, F. Han, and Z. Zhao, A Physically-Based Constitutive Modelling of a High Strength Aluminum Alloy at Hot Working Conditions, J. Alloys Compd., 2018, 743, p 283–293CrossRef H. Zhang, G. Chen, Q. Chen, F. Han, and Z. Zhao, A Physically-Based Constitutive Modelling of a High Strength Aluminum Alloy at Hot Working Conditions, J. Alloys Compd., 2018, 743, p 283–293CrossRef
17.
Zurück zum Zitat R. Bobbili, B. VenkataRamudu, and V. Madhu, A Physically-Based Constitutive Model for Hot Deformation of Ti-10-2-3 Alloy, J. Alloys Compd., 2017, 696, p 295–303CrossRef R. Bobbili, B. VenkataRamudu, and V. Madhu, A Physically-Based Constitutive Model for Hot Deformation of Ti-10-2-3 Alloy, J. Alloys Compd., 2017, 696, p 295–303CrossRef
18.
Zurück zum Zitat B. Li, Q. Pan, and Z. Yin, Microstructural Evolution and Constitutive Relationship of Al-Zn-Mg Alloy Containing Small Amount of Sc and Zr During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, J. Alloys Compd., 2014, 584, p 406–416CrossRef B. Li, Q. Pan, and Z. Yin, Microstructural Evolution and Constitutive Relationship of Al-Zn-Mg Alloy Containing Small Amount of Sc and Zr During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, J. Alloys Compd., 2014, 584, p 406–416CrossRef
19.
Zurück zum Zitat H.R.R. Ashtiani and P. Shahsavari, A Comparative Study on the Phenomenological and Artificial Neural Network Models to Predict Hot Deformation Behavior of AlCuMgPb Alloy, J. Alloys Compd., 2016, 687, p 263–273CrossRef H.R.R. Ashtiani and P. Shahsavari, A Comparative Study on the Phenomenological and Artificial Neural Network Models to Predict Hot Deformation Behavior of AlCuMgPb Alloy, J. Alloys Compd., 2016, 687, p 263–273CrossRef
20.
Zurück zum Zitat D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of Alloy Composition on Hot Deformation Behavior of Some Al-Mg-Si Alloys, Vacuum, 2018, 149, p 248–255CrossRef D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of Alloy Composition on Hot Deformation Behavior of Some Al-Mg-Si Alloys, Vacuum, 2018, 149, p 248–255CrossRef
21.
Zurück zum Zitat M.E. Mehtedi, S. Spigarelli, F. Gabrielli, and L. Donati, Comparison Study of Constitutive Models in Predicting the Hot Deformation Behavior of AA6060 and AA6063 Aluminium Alloys, Mater. Today Proc., 2015, 2, p 4732–4739CrossRef M.E. Mehtedi, S. Spigarelli, F. Gabrielli, and L. Donati, Comparison Study of Constitutive Models in Predicting the Hot Deformation Behavior of AA6060 and AA6063 Aluminium Alloys, Mater. Today Proc., 2015, 2, p 4732–4739CrossRef
22.
Zurück zum Zitat K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8CrossRef K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8CrossRef
23.
Zurück zum Zitat M.C. Dixit, N. Srivastava, and S.K. Rajput, Modeling of Flow Stress of AA6061 Under Hot Compression Using Artificial Neural Network, Mater. Today Proc., 2017, 4, p 1964–1971CrossRef M.C. Dixit, N. Srivastava, and S.K. Rajput, Modeling of Flow Stress of AA6061 Under Hot Compression Using Artificial Neural Network, Mater. Today Proc., 2017, 4, p 1964–1971CrossRef
24.
Zurück zum Zitat B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R.A. Gandhi, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509, p 4992–4998CrossRef B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R.A. Gandhi, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509, p 4992–4998CrossRef
25.
Zurück zum Zitat H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys, Adv. Eng. Mater., 2017, 19, p 1600607CrossRef H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys, Adv. Eng. Mater., 2017, 19, p 1600607CrossRef
26.
Zurück zum Zitat E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, An Experimental Analysis and Modeling of the Work-Softening Transient Due to Dynamic Recrystallization, Int. J. Plast, 2014, 54, p 113–131CrossRef E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, An Experimental Analysis and Modeling of the Work-Softening Transient Due to Dynamic Recrystallization, Int. J. Plast, 2014, 54, p 113–131CrossRef
27.
Zurück zum Zitat N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni-20%Cr Alloy Under Hot-to-Warm Working, Acta Mater., 2010, 58, p 3624–3632CrossRef N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni-20%Cr Alloy Under Hot-to-Warm Working, Acta Mater., 2010, 58, p 3624–3632CrossRef
28.
Zurück zum Zitat T. Zhong, K.P. Rao, Y.V.R.K. Prasad, F. Zhao, and M. Gupta, Hot Deformation Mechanisms, Microstructure and Texture Evolution in Extruded AZ31-Nano-alumina Composite, Mater. Sci. Eng., A, 2014, 589, p 41–49CrossRef T. Zhong, K.P. Rao, Y.V.R.K. Prasad, F. Zhao, and M. Gupta, Hot Deformation Mechanisms, Microstructure and Texture Evolution in Extruded AZ31-Nano-alumina Composite, Mater. Sci. Eng., A, 2014, 589, p 41–49CrossRef
29.
Zurück zum Zitat D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng., A, 2011, 528, p 8565–8572CrossRef D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng., A, 2011, 528, p 8565–8572CrossRef
30.
Zurück zum Zitat Y. Han, G. Liu, D. Zou, R. Liu, and G. Qiao, Deformation Behavior and Microstructural Evolution of As-Cast 904L Austenitic Stainless Steel During Hot Compression, Mater. Sci. Eng., A, 2013, 565, p 342–350CrossRef Y. Han, G. Liu, D. Zou, R. Liu, and G. Qiao, Deformation Behavior and Microstructural Evolution of As-Cast 904L Austenitic Stainless Steel During Hot Compression, Mater. Sci. Eng., A, 2013, 565, p 342–350CrossRef
31.
Zurück zum Zitat Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528, p 1780–1786CrossRef Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528, p 1780–1786CrossRef
32.
Zurück zum Zitat D. Xiao, X. Peng, X. Liang, Y. Deng, G. Xu, and Z. Yin, Research on Constitutive Models and Hot Workability of As-Homogenized Al-Zn-Mg-Cu Alloy During Isothermal Compression, Met. Mater. Int., 2017, 23, p 591–602CrossRef D. Xiao, X. Peng, X. Liang, Y. Deng, G. Xu, and Z. Yin, Research on Constitutive Models and Hot Workability of As-Homogenized Al-Zn-Mg-Cu Alloy During Isothermal Compression, Met. Mater. Int., 2017, 23, p 591–602CrossRef
33.
Zurück zum Zitat H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63.CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63.CrossRef
34.
Zurück zum Zitat S. Spigarelli, E. Evangelista, and H.J. McQueen, Study of Hot Workability of a Heat Treated AA6082 Aluminum Alloy, Scripta Mater., 2003, 49, p 179–183.CrossRef S. Spigarelli, E. Evangelista, and H.J. McQueen, Study of Hot Workability of a Heat Treated AA6082 Aluminum Alloy, Scripta Mater., 2003, 49, p 179–183.CrossRef
35.
Zurück zum Zitat Z. Cai, F. Chen, and J. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J. Alloys Compd., 2015, 648, p 215–222.CrossRef Z. Cai, F. Chen, and J. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J. Alloys Compd., 2015, 648, p 215–222.CrossRef
36.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389.CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389.CrossRef
37.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef
38.
Zurück zum Zitat U.F. Kocks, Laws for Working-Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., 1976, 98, p 76–85CrossRef U.F. Kocks, Laws for Working-Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., 1976, 98, p 76–85CrossRef
39.
Zurück zum Zitat H.M.Y. Estrin, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef H.M.Y. Estrin, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef
40.
Zurück zum Zitat P.M. Souza, H. Beladi, R. Singh, B. Rolfe, and P.D. Hodgson, Constitutive Analysis of Hot Deformation Behavior of a Ti6Al4V Alloy Using Physical Based Model, Mater. Sci. Eng. A, 2015, 648, p 265–273CrossRef P.M. Souza, H. Beladi, R. Singh, B. Rolfe, and P.D. Hodgson, Constitutive Analysis of Hot Deformation Behavior of a Ti6Al4V Alloy Using Physical Based Model, Mater. Sci. Eng. A, 2015, 648, p 265–273CrossRef
41.
Zurück zum Zitat N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef
42.
Zurück zum Zitat Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef
Metadaten
Titel
Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy
Publikationsdatum
22.01.2019
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-3873-5

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Engineering and Performance 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.