Skip to main content

2010 | OriginalPaper | Buchkapitel

Constitutive Models for the Force-Extension Behavior of Biological Filaments

verfasst von : J. S. Palmer, C. E. Castro, M. Arslan, M. C. Boyce

Erschienen in: IUTAM Symposium on Cellular, Molecular and Tissue Mechanics

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biopolymer filaments form the molecular backbone of biological structures throughout the body. The biomechanical response of single filaments yields insight into their individual behavior at the molecular level as well as their concerted networked behavior at the cellular and tissue scales. This paper focuses on modeling approaches for axial force vs. extension behavior of single biopolymer filaments within three stiffness regimes: flexible, semiflexible, and stiff. The end-to-end force-extension behaviors of flexible and semiflexible filaments arise as a result of a reduction in configurational space as the filament is straightened and are captured with entropic models including the freely jointed chain model and the worm-like chain model. As the filament is straightened and the end-to-end distance approaches the filament contour length, the contour length is directly axially extended and an internal energy contribution governs the force-extension behavior in this limiting extension regime. On the other hand, for stiff filaments in originally crimped or kinked configurations, the end-to-end force vs. extension behavior results from the unbending (straightening) of the crimped configuration as governed by an internal energy based elastica approximation which is also complemented by an axial stretching contribution once the end-to-end distance approaches the contour length of the filament. Simplified, analytical force-extension relationships are developed for the worm-like chain model for semiflexible filaments, and for the Euler elastica model for stiffer, wavy fibers. For the case of flexible molecules containing modular folded domains, the influence of force-induced unfolding on the force-extension behavior of single molecules and assemblies of multiple molecules is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat MacKintosh FC, Kas J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425–4428CrossRef MacKintosh FC, Kas J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425–4428CrossRef
2.
Zurück zum Zitat Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford
3.
Zurück zum Zitat Meyer KH, Ferri C (1935) Sur l’elasticite du caoutchouc. Helv Chim Acta 18:570–589CrossRef Meyer KH, Ferri C (1935) Sur l’elasticite du caoutchouc. Helv Chim Acta 18:570–589CrossRef
4.
Zurück zum Zitat Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:209–212CrossRef Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:209–212CrossRef
5.
Zurück zum Zitat Qi HJ, Ortiz C, Boyce MC (2006) Mechanics of biomacromolecular networks containing folded domains. J Eng Mater Technol Trans ASME 128:509–518CrossRef Qi HJ, Ortiz C, Boyce MC (2006) Mechanics of biomacromolecular networks containing folded domains. J Eng Mater Technol Trans ASME 128:509–518CrossRef
6.
Zurück zum Zitat Palmer JS, Boyce MC (2008) Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomater 4:597–612CrossRef Palmer JS, Boyce MC (2008) Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomater 4:597–612CrossRef
7.
Zurück zum Zitat Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90:3796–3805CrossRef Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90:3796–3805CrossRef
8.
Zurück zum Zitat Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19:101–107CrossRef Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19:101–107CrossRef
9.
Zurück zum Zitat Kuhn W, Grün F (1942) Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrech- ung hochelastischer Stoffe. Colloid Polym Sci 101:248–271 Kuhn W, Grün F (1942) Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrech- ung hochelastischer Stoffe. Colloid Polym Sci 101:248–271
10.
Zurück zum Zitat Treloar LRG (1958) The physics of rubber elasticity, 2nd edn. Clarendon Press, Oxford Treloar LRG (1958) The physics of rubber elasticity, 2nd edn. Clarendon Press, Oxford
11.
Zurück zum Zitat Cohen A (1991) A pade approximant to the inverse langevin function. Rheol Acta 30:270–273CrossRef Cohen A (1991) A pade approximant to the inverse langevin function. Rheol Acta 30:270–273CrossRef
12.
Zurück zum Zitat Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef
13.
Zurück zum Zitat Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764–4767CrossRef Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764–4767CrossRef
14.
Zurück zum Zitat Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J Mol Biol 286:553–561CrossRef Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J Mol Biol 286:553–561CrossRef
15.
Zurück zum Zitat Law R, Carl P, Harper S, Dalhaimer P, Speicher DW, Discher DE (2003) Cooperativity in forced unfolding of tandem spectrin repeats. Biophys J 84:533–544CrossRef Law R, Carl P, Harper S, Dalhaimer P, Speicher DW, Discher DE (2003) Cooperativity in forced unfolding of tandem spectrin repeats. Biophys J 84:533–544CrossRef
16.
Zurück zum Zitat Bell GI (1978) Models for specific adhesion of cells to cells. Science 200:618–627CrossRef Bell GI (1978) Models for specific adhesion of cells to cells. Science 200:618–627CrossRef
17.
Zurück zum Zitat Eyring H (1936) Viscosity, plasticity and diffusion as examples of absolute reaction rates. J Chem Physics 4:283–291CrossRef Eyring H (1936) Viscosity, plasticity and diffusion as examples of absolute reaction rates. J Chem Physics 4:283–291CrossRef
18.
Zurück zum Zitat Arslan M, Boyce MC, Qi HJ, Ortiz C (2008) Constitutive modeling of the stress-stretch behavior of two-dimensional triangulated macromolecular networks containing folded domains. J Appl Mech 75:011020CrossRef Arslan M, Boyce MC, Qi HJ, Ortiz C (2008) Constitutive modeling of the stress-stretch behavior of two-dimensional triangulated macromolecular networks containing folded domains. J Appl Mech 75:011020CrossRef
19.
Zurück zum Zitat Kratky O, Porod G (1949) Röntgenuntersuchung gelöster Fadenmoleküle. Rec Trav Chim Pays Bas 68:1106–1123CrossRef Kratky O, Porod G (1949) Röntgenuntersuchung gelöster Fadenmoleküle. Rec Trav Chim Pays Bas 68:1106–1123CrossRef
20.
Zurück zum Zitat Yamakawa H (1976) Statistical-mechanics of wormlike chains. Pure Appl Chem 46:135–141CrossRef Yamakawa H (1976) Statistical-mechanics of wormlike chains. Pure Appl Chem 46:135–141CrossRef
21.
Zurück zum Zitat Kovac J, Crabb CC (1982) Modified Gaussian model for rubber elasticity. 2. The wormlike chain. Macromolecules 15:537–541CrossRef Kovac J, Crabb CC (1982) Modified Gaussian model for rubber elasticity. 2. The wormlike chain. Macromolecules 15:537–541CrossRef
22.
Zurück zum Zitat Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600CrossRef Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600CrossRef
23.
Zurück zum Zitat Liphardt J, Onoa B, Smith SB, Tinoco IJ, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737CrossRef Liphardt J, Onoa B, Smith SB, Tinoco IJ, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737CrossRef
24.
Zurück zum Zitat Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRef
25.
Zurück zum Zitat Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285CrossRef Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285CrossRef
26.
Zurück zum Zitat MacKintosh FC (2006) Polymer-based models of cytoskeletal networks. In: Mofrad MK, Kamm RD (eds) Cytoskeletal mechanics: Models and measurements. Cambridge University Press, Cambridge MacKintosh FC (2006) Polymer-based models of cytoskeletal networks. In: Mofrad MK, Kamm RD (eds) Cytoskeletal mechanics: Models and measurements. Cambridge University Press, Cambridge
27.
Zurück zum Zitat Palmer JS (2008) Microstructurally-based constitutive models of cytoskeletal networks for simulation of the biomechanical response of biological cells. Mechanical Engineering PhD Thesis, MIT, Cambridge, MA, p 375 Palmer JS (2008) Microstructurally-based constitutive models of cytoskeletal networks for simulation of the biomechanical response of biological cells. Mechanical Engineering PhD Thesis, MIT, Cambridge, MA, p 375
28.
Zurück zum Zitat Odijk T (1995) Stiff chains and filaments under tension. macromolecules 28:7016–7018 Odijk T (1995) Stiff chains and filaments under tension. macromolecules 28:7016–7018
29.
Zurück zum Zitat Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799CrossRef Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799CrossRef
30.
Zurück zum Zitat Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRef Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRef
31.
Zurück zum Zitat Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435:191–194CrossRef Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435:191–194CrossRef
32.
Zurück zum Zitat Liu XM, Pollack GH (2002) Mechanics of F-actin characterized with microfabricated cantilevers. Biophys J 83:2705–2715CrossRef Liu XM, Pollack GH (2002) Mechanics of F-actin characterized with microfabricated cantilevers. Biophys J 83:2705–2715CrossRef
33.
Zurück zum Zitat Kröner E (1959) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch Ration Mech Anal 4:273–334CrossRef Kröner E (1959) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch Ration Mech Anal 4:273–334CrossRef
34.
Zurück zum Zitat Lee EH (1969) Elastic plastic deformation at finite strain. ASME J Appl Mech 36:1–6 Lee EH (1969) Elastic plastic deformation at finite strain. ASME J Appl Mech 36:1–6
35.
Zurück zum Zitat Bertoldi K, Boyce MC (2007) Mechanics of the hysteretic large strain behavior of mussel byssus threads. J Mater Sci 42:8943–8956CrossRef Bertoldi K, Boyce MC (2007) Mechanics of the hysteretic large strain behavior of mussel byssus threads. J Mater Sci 42:8943–8956CrossRef
36.
Zurück zum Zitat Comninou M, Yannas IV (1976) Dependence of stress-strain nonlinearity of connective tissues on geometry of collagen-fibers. J Biomech 9:427–433CrossRef Comninou M, Yannas IV (1976) Dependence of stress-strain nonlinearity of connective tissues on geometry of collagen-fibers. J Biomech 9:427–433CrossRef
37.
Zurück zum Zitat Buckley CP, Lloyd DW, Konopasek M (1980) On the deformation of slender filaments with planar crimp – Theory, numerical-solution and applications to tendon collagen and textile materials. P Roy Soc Lond A Mat 372:33–64CrossRef Buckley CP, Lloyd DW, Konopasek M (1980) On the deformation of slender filaments with planar crimp – Theory, numerical-solution and applications to tendon collagen and textile materials. P Roy Soc Lond A Mat 372:33–64CrossRef
38.
Zurück zum Zitat Garikipati K, Göktepe S, Miehe C (2008) Elastica-based strain energy functions for soft biological tissue. J Mech Phys Solid 56:1693–1713CrossRef Garikipati K, Göktepe S, Miehe C (2008) Elastica-based strain energy functions for soft biological tissue. J Mech Phys Solid 56:1693–1713CrossRef
39.
Zurück zum Zitat Castro CE (2009) Ph.D. Thesis (in progress). Mechanical engineering. MIT, Cambridge, MA Castro CE (2009) Ph.D. Thesis (in progress). Mechanical engineering. MIT, Cambridge, MA
40.
Zurück zum Zitat Frisch-Fay R (1962) Flexible bars. Butterworths, Washington, DC Frisch-Fay R (1962) Flexible bars. Butterworths, Washington, DC
41.
Zurück zum Zitat Ottani V (2001) Collagen structure and functional implications. Micron 32:251–260CrossRef Ottani V (2001) Collagen structure and functional implications. Micron 32:251–260CrossRef
42.
Zurück zum Zitat Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng Trans ASME 124:72–77CrossRef Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng Trans ASME 124:72–77CrossRef
43.
Zurück zum Zitat Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29:1131–1136CrossRef Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29:1131–1136CrossRef
44.
Zurück zum Zitat Ker RF (2007) Mechanics of tendon, from an engineering perspective. Int J Fatigue 29: 1001–1009CrossRef Ker RF (2007) Mechanics of tendon, from an engineering perspective. Int J Fatigue 29: 1001–1009CrossRef
45.
Zurück zum Zitat Boal DH (2002) Mechanics of the cell. Cambridge University Press, Cambridge, UK; New York Boal DH (2002) Mechanics of the cell. Cambridge University Press, Cambridge, UK; New York
46.
Zurück zum Zitat Arslan M, Boyce MC (2006) Constitutive modeling of the finite deformation behavior of membranes possessing a triangulated network microstructure. J Appl Mech 73:536–543CrossRef Arslan M, Boyce MC (2006) Constitutive modeling of the finite deformation behavior of membranes possessing a triangulated network microstructure. J Appl Mech 73:536–543CrossRef
Metadaten
Titel
Constitutive Models for the Force-Extension Behavior of Biological Filaments
verfasst von
J. S. Palmer
C. E. Castro
M. Arslan
M. C. Boyce
Copyright-Jahr
2010
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3348-2_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.