Skip to main content
main-content

Über dieses Buch

Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.”

Praise for the first edition:

"Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory." --Cornelius T. Leondes, UCLA

"Groundbreaking work. ... Friedman's accomplishment represents engineering at its finest. ... The credibility of the theory rests upon the formal proofs which are interspersed among the illuminating hypothetical dialog sequences between manager and analyst, which bring out distinctions that the organization must face, en route to accepting Friedman's work as essential to achieve quality control in developing and applying large models." --John N. Warfield

Inhaltsverzeichnis

Frontmatter

2017 | OriginalPaper | Buchkapitel

Chapter 1. Motivations

What is Constraint Theory and why is it Important?
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 2. The Four-Fold Way

How to Perceive Complex Mathematical Models and Well-Posed Problems
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 3. General Results

From Protomath to Math to Metamath
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 4. Regular Relations

Searching for the Kernels of Constraint
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 5. Model Consistency and Computational Allowability

George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 6. Discrete and Interval Relations

The Diminished Utility of Metamodels
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 7. The Logical Structure of Constraint Theory

A Compact Summary
George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 8. Examples of Constraint Theory Applied to Real-World Problems

George J. Friedman, Phan Phan

2017 | OriginalPaper | Buchkapitel

Chapter 9. Manager and Analyst Meet Again

Gists and Schizophrenia
George J. Friedman, Phan Phan

Backmatter

Weitere Informationen

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Besonders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen – „Deep Learning“. Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz besondere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.
Jetzt gratis downloaden!

Marktübersichten

Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

Bildnachweise