Skip to main content

2016 | OriginalPaper | Buchkapitel

Constricted Variational Density Functional Theory Approach to the Description of Excited States

verfasst von : Tom Ziegler, Mykhaylo Krykunov, Issaka Seidu, Young Choon Park

Erschienen in: Density-Functional Methods for Excited States

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review the theoretical foundation of constricted variational density functional theory and illustrate its scope through applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
See the chapter “Ensemble DFT approach to excited states of strongly correlated molecular systems” by M. Filatov.
 
2
See Sect. 3.1 from part S1 of supporting information in Ziegler et al. [27].
 
3
See Sect. 3.3 from part S1 of supporting information in Ziegler et al. [27].
 
4
See Sect. 3.2 from part S1 of supporting information in Ziegler et al. [27].
 
5
See Sect. 3.4 from part S1 of supporting information in Ziegler et al. [27].
 
6
See Sect. 4.1 from part S1 of supporting information in Ziegler et al. [27].
 
7
See Sect. 3.0 from part S2 of supporting information in Ziegler et al. [27].
 
Literatur
1.
Zurück zum Zitat Jensen F (2006) Introduction to computational chemistry. Wiley, New York Jensen F (2006) Introduction to computational chemistry. Wiley, New York
2.
Zurück zum Zitat Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, New YorkCrossRef Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, New YorkCrossRef
3.
Zurück zum Zitat Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRef Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRef
4.
Zurück zum Zitat Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, pp 155–193CrossRef Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, pp 155–193CrossRef
5.
Zurück zum Zitat van Gisbergen SJA, Snijders JG (1995) A density functional theory study of frequency dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules. J Chem Phys 103:9347CrossRef van Gisbergen SJA, Snijders JG (1995) A density functional theory study of frequency dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules. J Chem Phys 103:9347CrossRef
6.
Zurück zum Zitat Petersilka M, Grossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:12CrossRef Petersilka M, Grossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:12CrossRef
7.
Zurück zum Zitat Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454CrossRef Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454CrossRef
8.
Zurück zum Zitat Furche F (2001) On the density matrix based approach to time-dependent density functional response theory. J Chem Phys 114:5882 Furche F (2001) On the density matrix based approach to time-dependent density functional response theory. J Chem Phys 114:5882
9.
Zurück zum Zitat Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433CrossRef Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433CrossRef
10.
Zurück zum Zitat Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG, Reining L, Onida G (2009) Double excitations in finite systems. J Chem Phys 130:044108CrossRef Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG, Reining L, Onida G (2009) Double excitations in finite systems. J Chem Phys 130:044108CrossRef
11.
Zurück zum Zitat Gritsenko O, Baerends EJ (2009) Double excitation effects in non-adiabatic time-dependent theory with an analytic construction of the exchange correlation kernel in the common energy denominator energy approximation. Phys Chem 11:4640 Gritsenko O, Baerends EJ (2009) Double excitation effects in non-adiabatic time-dependent theory with an analytic construction of the exchange correlation kernel in the common energy denominator energy approximation. Phys Chem 11:4640
12.
Zurück zum Zitat Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet excited states of organic molecules. J Chem Theory Comput 5:2420CrossRef Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet excited states of organic molecules. J Chem Theory Comput 5:2420CrossRef
13.
Zurück zum Zitat Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326CrossRef Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326CrossRef
14.
Zurück zum Zitat Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long range hybrids. J Chem Theory Comput 4:123–135CrossRef Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long range hybrids. J Chem Theory Comput 4:123–135CrossRef
15.
Zurück zum Zitat Grimme S, Neese F (2007) Double-hybrid density functional theory for excited electronic states of molecules. J Chem Phys 127:154116CrossRef Grimme S, Neese F (2007) Double-hybrid density functional theory for excited electronic states of molecules. J Chem Phys 127:154116CrossRef
16.
Zurück zum Zitat Send R, Valsson O, Filippi C (2011) Electronic excitations of simple cyanine dyes: reconciling density functional and wave function methods. J Chem Theory Comput 7:444CrossRef Send R, Valsson O, Filippi C (2011) Electronic excitations of simple cyanine dyes: reconciling density functional and wave function methods. J Chem Theory Comput 7:444CrossRef
17.
Zurück zum Zitat Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6:2071CrossRef Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6:2071CrossRef
18.
Zurück zum Zitat Moore B II, Autschbach J (2013) Longest-wavelength electronic excitations of linear cyanines: the role of electron delocalization and of approximations in time-dependent density functional theory. J Chem Theory Comput 9:4991CrossRef Moore B II, Autschbach J (2013) Longest-wavelength electronic excitations of linear cyanines: the role of electron delocalization and of approximations in time-dependent density functional theory. J Chem Theory Comput 9:4991CrossRef
19.
Zurück zum Zitat Schipper PRT, Gritsenko OV, van Gisberger SJA, Baerends EJ (2000) Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J Chem Phys 112:1344CrossRef Schipper PRT, Gritsenko OV, van Gisberger SJA, Baerends EJ (2000) Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J Chem Phys 112:1344CrossRef
20.
Zurück zum Zitat Likura H, Tsuneda T, Tanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540CrossRef Likura H, Tsuneda T, Tanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540CrossRef
21.
Zurück zum Zitat Song J-W, Watson MA, Hirao K (2009) An improved long-range corrected hybrid functional with vanishing Hartree–Fock exchange at zero interelectronic distance (LC2gau-BOP). J Chem Phys 131:144108CrossRef Song J-W, Watson MA, Hirao K (2009) An improved long-range corrected hybrid functional with vanishing Hartree–Fock exchange at zero interelectronic distance (LC2gau-BOP). J Chem Phys 131:144108CrossRef
22.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207CrossRef Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207CrossRef
23.
Zurück zum Zitat Baer R, Neuhauser D (2005) Density functional theory with correct long-range asymptotic behavior. Phys Rev Lett 94:043002CrossRef Baer R, Neuhauser D (2005) Density functional theory with correct long-range asymptotic behavior. Phys Rev Lett 94:043002CrossRef
24.
Zurück zum Zitat Dreuw A, Weisman J, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943CrossRef Dreuw A, Weisman J, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943CrossRef
25.
Zurück zum Zitat Tozer D (2003) Relationship between long-range charge transfer error and integer discontinuity error in Kohn Sham theory. J Chem Phys 119:12697CrossRef Tozer D (2003) Relationship between long-range charge transfer error and integer discontinuity error in Kohn Sham theory. J Chem Phys 119:12697CrossRef
26.
Zurück zum Zitat Krykunov M, Ziegler T (2013) Self-consistent formulation of constricted variational density functional theory with orbital relaxation. Implementation and application. J Chem Theory Comput 9:2761CrossRef Krykunov M, Ziegler T (2013) Self-consistent formulation of constricted variational density functional theory with orbital relaxation. Implementation and application. J Chem Theory Comput 9:2761CrossRef
27.
Zurück zum Zitat Ziegler T, Krykunov M, Cullen J (2012) The implementation of a self-consistent constricted variational density functional theory for the description of excited states. J Chem Phys 136:124107CrossRef Ziegler T, Krykunov M, Cullen J (2012) The implementation of a self-consistent constricted variational density functional theory for the description of excited states. J Chem Phys 136:124107CrossRef
28.
Zurück zum Zitat Cullen J, Krykunov M, Ziegler T (2011) The formulation of a self-consistent constricted variational density functional theory for the description of excited states. Chem Phys 391:11CrossRef Cullen J, Krykunov M, Ziegler T (2011) The formulation of a self-consistent constricted variational density functional theory for the description of excited states. Chem Phys 391:11CrossRef
29.
Zurück zum Zitat Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102CrossRef Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102CrossRef
30.
Zurück zum Zitat Krykunov M, Seth M, Ziegler T (2014) Derivation of the RPA (random phase approximation) equation of ATDDFT (adiabatic time dependent density functional ground state response theory) from an excited state variational approach based on the ground state functional. J Chem Phys 140:18A502CrossRef Krykunov M, Seth M, Ziegler T (2014) Derivation of the RPA (random phase approximation) equation of ATDDFT (adiabatic time dependent density functional ground state response theory) from an excited state variational approach based on the ground state functional. J Chem Phys 140:18A502CrossRef
31.
Zurück zum Zitat Ziegler T, Krykunov M (2010) On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory. J Chem Phys 133:074104CrossRef Ziegler T, Krykunov M (2010) On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory. J Chem Phys 133:074104CrossRef
32.
Zurück zum Zitat Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2008) A revised electronic Hessian for approximate time-dependent density functional theory. J Chem Phys 129:184114CrossRef Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2008) A revised electronic Hessian for approximate time-dependent density functional theory. J Chem Phys 129:184114CrossRef
33.
Zurück zum Zitat Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818CrossRef Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818CrossRef
34.
Zurück zum Zitat Cave RJ, Zhang F, Maitra NT, Burke K (2004) A dressed time-dependent density functional treatment of the 21A states of butadiene and hexatriene. Chem Phys Lett 389:39CrossRef Cave RJ, Zhang F, Maitra NT, Burke K (2004) A dressed time-dependent density functional treatment of the 21A states of butadiene and hexatriene. Chem Phys Lett 389:39CrossRef
35.
Zurück zum Zitat Mazur G, Wlodarczyk R (2009) Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J Comp Chem 30:811CrossRef Mazur G, Wlodarczyk R (2009) Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J Comp Chem 30:811CrossRef
36.
Zurück zum Zitat Elliott P, Goldson S, Canahui C, Maitra NT (2011) Perspectives on double-excitations in TDDFT. Chem Phys 391:110CrossRef Elliott P, Goldson S, Canahui C, Maitra NT (2011) Perspectives on double-excitations in TDDFT. Chem Phys 391:110CrossRef
37.
Zurück zum Zitat Slater JC, Wood JH (1971) Statistical exchange and the total energy of a crystal. Int J Quant Chem Suppl 4:3 Slater JC, Wood JH (1971) Statistical exchange and the total energy of a crystal. Int J Quant Chem Suppl 4:3
38.
Zurück zum Zitat Slater JC (1972) Statistical exchange-correlation in the self-consistent field. Adv Quant Chem 6:1CrossRef Slater JC (1972) Statistical exchange-correlation in the self-consistent field. Adv Quant Chem 6:1CrossRef
39.
Zurück zum Zitat Kowalczyk T, Yost SR, Van Voorhis T (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J Chem Phys 134:054128CrossRef Kowalczyk T, Yost SR, Van Voorhis T (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J Chem Phys 134:054128CrossRef
40.
Zurück zum Zitat Ziegler T, Rauk R, Baerends EJ (1977) On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor Chim Acta 43:261CrossRef Ziegler T, Rauk R, Baerends EJ (1977) On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor Chim Acta 43:261CrossRef
41.
Zurück zum Zitat Ziegler T, Rauk A, Baerends EJ (1976) The electronic structure of tetrahedral oxo-complexes. The nature of the “charge transfer” transitions. J Chem Phys 16:209 Ziegler T, Rauk A, Baerends EJ (1976) The electronic structure of tetrahedral oxo-complexes. The nature of the “charge transfer” transitions. J Chem Phys 16:209
42.
43.
Zurück zum Zitat Besley N, Gilbert A, Gill P (2009) Self-consistent-field calculations of core excited states. J Chem Phys 130:124308-1CrossRef Besley N, Gilbert A, Gill P (2009) Self-consistent-field calculations of core excited states. J Chem Phys 130:124308-1CrossRef
44.
Zurück zum Zitat Park YC, Krykunov M, Seidu I, Ziegler T (2014) On the relation between adiabatic time dependent density functional theory (TDDFT) and the ΔSCF-DFT method. Introducing a numerically stable ΔSCF-DFT scheme for local functionals based on constricted variational DFT. Mol Phys 112:661 Park YC, Krykunov M, Seidu I, Ziegler T (2014) On the relation between adiabatic time dependent density functional theory (TDDFT) and the ΔSCF-DFT method. Introducing a numerically stable ΔSCF-DFT scheme for local functionals based on constricted variational DFT. Mol Phys 112:661
45.
Zurück zum Zitat Gavnholt J, Olsen T, Engelund M, Schiøtz J (2008) Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. J Phys Rev B 78:075441/1CrossRef Gavnholt J, Olsen T, Engelund M, Schiøtz J (2008) Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. J Phys Rev B 78:075441/1CrossRef
46.
Zurück zum Zitat Liu TQ, Han WG, Himo FG, Ullmann M, Bashford D, Toutchkine A, Hahn KM, Noodleman L (2004) Density functional vertical self-consistent reaction field theory for solvatochromism studies of solvent-sensitive dyes. Phys Chem A 108:3545CrossRef Liu TQ, Han WG, Himo FG, Ullmann M, Bashford D, Toutchkine A, Hahn KM, Noodleman L (2004) Density functional vertical self-consistent reaction field theory for solvatochromism studies of solvent-sensitive dyes. Phys Chem A 108:3545CrossRef
47.
Zurück zum Zitat Ceresoli D, Tosatti E, Scandolo S, Santoro G, Serra S (2004) Trapping of excitons at chemical defects in polyethylene. J Chem Phys 121:6478CrossRef Ceresoli D, Tosatti E, Scandolo S, Santoro G, Serra S (2004) Trapping of excitons at chemical defects in polyethylene. J Chem Phys 121:6478CrossRef
48.
Zurück zum Zitat Zhekova H, Seth M, Ziegler T (2014) Application of time dependent and time independent density functional theory to the first π to π* transition in cyanine dyes. Int J Quant Chem 114:1019CrossRef Zhekova H, Seth M, Ziegler T (2014) Application of time dependent and time independent density functional theory to the first π to π* transition in cyanine dyes. Int J Quant Chem 114:1019CrossRef
49.
Zurück zum Zitat Ziegler T (2011) A chronical about the development of electronic structure theories for transition metal complexes. Struct Bond 47:1CrossRef Ziegler T (2011) A chronical about the development of electronic structure theories for transition metal complexes. Struct Bond 47:1CrossRef
50.
Zurück zum Zitat von Barth U (1979) Local-density theory of multiplet structure. Phys Rev A 20:1693CrossRef von Barth U (1979) Local-density theory of multiplet structure. Phys Rev A 20:1693CrossRef
51.
Zurück zum Zitat Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274CrossRef Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274CrossRef
52.
Zurück zum Zitat Levy M, Perdew JP (1985) Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A 32:2010CrossRef Levy M, Perdew JP (1985) Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A 32:2010CrossRef
53.
Zurück zum Zitat Gaudoin R, Burke K (2005) Lack of Hohenberg-Kohn theorem for excited states. Phys Rev Lett 93:173001CrossRef Gaudoin R, Burke K (2005) Lack of Hohenberg-Kohn theorem for excited states. Phys Rev Lett 93:173001CrossRef
54.
Zurück zum Zitat Oliveira LN, Gross EKU, Kohn W (1988) Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys Rev A 37:2821CrossRef Oliveira LN, Gross EKU, Kohn W (1988) Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys Rev A 37:2821CrossRef
55.
Zurück zum Zitat Filatov M, Shaik S (1998) Spin-restricted density functional approach to the open-shell problem. Chem Phys Lett 288:689CrossRef Filatov M, Shaik S (1998) Spin-restricted density functional approach to the open-shell problem. Chem Phys Lett 288:689CrossRef
56.
Zurück zum Zitat Filatov M, Shaik S (1999) Spin-restricted density functional approach to the open-shell problem. Chem Phys Lett 304:429CrossRef Filatov M, Shaik S (1999) Spin-restricted density functional approach to the open-shell problem. Chem Phys Lett 304:429CrossRef
57.
Zurück zum Zitat Filatov M, Huix-Rotllant M (2014) Description of electron transfer in the ground and excited states of organic donor–acceptor systems by single-reference and multi-reference density functional methods. J Chem Phys 141:024112CrossRef Filatov M, Huix-Rotllant M (2014) Description of electron transfer in the ground and excited states of organic donor–acceptor systems by single-reference and multi-reference density functional methods. J Chem Phys 141:024112CrossRef
58.
Zurück zum Zitat Gidopoulos NI, Papaconstantinou PG, Gross EKU (2002) Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys Rev Lett 88:03300CrossRef Gidopoulos NI, Papaconstantinou PG, Gross EKU (2002) Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys Rev Lett 88:03300CrossRef
59.
Zurück zum Zitat Gross EKU, Oliveira LN, Kohn W (1988) Spurious interactions, and their correction, in the ensemble-Kohn-Sham scheme for excited states. Phys Rev A 37:2809CrossRef Gross EKU, Oliveira LN, Kohn W (1988) Spurious interactions, and their correction, in the ensemble-Kohn-Sham scheme for excited states. Phys Rev A 37:2809CrossRef
60.
Zurück zum Zitat Levy M, Nagy A (1999) Variational density-functional theory for an individual excited state. Phys Rev Lett 83:4361CrossRef Levy M, Nagy A (1999) Variational density-functional theory for an individual excited state. Phys Rev Lett 83:4361CrossRef
61.
Zurück zum Zitat Görling A, Levy M (1993) Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys Rev B 47:13105CrossRef Görling A, Levy M (1993) Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys Rev B 47:13105CrossRef
62.
Zurück zum Zitat Ziegler T, Krykunov M, Autschbach J (2014) Derivation of the RPA (random phase approximation) equation of ATDDFT (adiabatic time dependent density functional ground state response theory) from an excited state variational approach based on the ground state functional. J Chem Theory Comput 10:3980CrossRef Ziegler T, Krykunov M, Autschbach J (2014) Derivation of the RPA (random phase approximation) equation of ATDDFT (adiabatic time dependent density functional ground state response theory) from an excited state variational approach based on the ground state functional. J Chem Theory Comput 10:3980CrossRef
63.
Zurück zum Zitat Ziegler T, Krykunov M, Cullen J (2011) The application of constricted variational density functional theory to excitations involving electron transitions from occupied lone-pair orbitals to virtual π* orbitals. J Chem Theory Comput 7:2485CrossRef Ziegler T, Krykunov M, Cullen J (2011) The application of constricted variational density functional theory to excitations involving electron transitions from occupied lone-pair orbitals to virtual π* orbitals. J Chem Theory Comput 7:2485CrossRef
64.
Zurück zum Zitat Krykunov M, Grimme S, Ziegler T (2012) Accurate theoretical description of the 1La and 1Lb excited states in acenes using the all order constricted variational density functional theory method and the local density approximation. J Chem Theory Comput 8:4434CrossRef Krykunov M, Grimme S, Ziegler T (2012) Accurate theoretical description of the 1La and 1Lb excited states in acenes using the all order constricted variational density functional theory method and the local density approximation. J Chem Theory Comput 8:4434CrossRef
65.
Zurück zum Zitat Zhekova H, Krykunov M, Autschbach J, Ziegler T (2014) Applications of time dependent and time independent density functional theory to the first π to π* transition in cyanine dyes. J Chem Theory Comput 10:3299CrossRef Zhekova H, Krykunov M, Autschbach J, Ziegler T (2014) Applications of time dependent and time independent density functional theory to the first π to π* transition in cyanine dyes. J Chem Theory Comput 10:3299CrossRef
66.
Zurück zum Zitat Seidu I, Krykunov M, Ziegler T (2014) Applications of time-Ù‐dependent and time-Ù‐ independent density functional theory to Rydberg transitions. J Phys Chem A ASAP. doi:10.1021/jp5082802 Seidu I, Krykunov M, Ziegler T (2014) Applications of time-Ù‐dependent and time-Ù‐ independent density functional theory to Rydberg transitions. J Phys Chem A ASAP. doi:10.​1021/​jp5082802
67.
Zurück zum Zitat Wang F, Ziegler T (2004) Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential. J Chem Phys 121:12191-1 Wang F, Ziegler T (2004) Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential. J Chem Phys 121:12191-1
68.
Zurück zum Zitat Wang F, Ziegler T (2005) The performance of time-dependent density functional theory based on a noncollinear exchange-correlation potential in the calculations of excitation energies. J Chem Phys 122:074109-1 Wang F, Ziegler T (2005) The performance of time-dependent density functional theory based on a noncollinear exchange-correlation potential in the calculations of excitation energies. J Chem Phys 122:074109-1
69.
Zurück zum Zitat Wang F, Ziegler T (2006) Use of noncollinear exchange-correlation potentials in multiplet resolutions by time-dependent density functional theory. Int J Quant Chem 106:2545–2550CrossRef Wang F, Ziegler T (2006) Use of noncollinear exchange-correlation potentials in multiplet resolutions by time-dependent density functional theory. Int J Quant Chem 106:2545–2550CrossRef
70.
Zurück zum Zitat Hirata S, Head-Gordon M (1999) Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem Phys Lett 291:314 Hirata S, Head-Gordon M (1999) Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem Phys Lett 291:314
71.
Zurück zum Zitat Amos AT, Hall GG (1961) Single determinant wave functions. Proc R Soc A 263:483CrossRef Amos AT, Hall GG (1961) Single determinant wave functions. Proc R Soc A 263:483CrossRef
72.
73.
Zurück zum Zitat Schreiber M, Silva-Junior M, Sauer S, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110CrossRef Schreiber M, Silva-Junior M, Sauer S, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110CrossRef
74.
Zurück zum Zitat Platt JR (1949) Classification of spectra of Cata condensed hydrocarbons. J Chem Phys 17:484CrossRef Platt JR (1949) Classification of spectra of Cata condensed hydrocarbons. J Chem Phys 17:484CrossRef
75.
Zurück zum Zitat Grimme S, Parac M (2003) Substantial errors from time-dependent density functional theory for the calculation of excited states of large π systems. Chemphyschem 4:292CrossRef Grimme S, Parac M (2003) Substantial errors from time-dependent density functional theory for the calculation of excited states of large π systems. Chemphyschem 4:292CrossRef
76.
Zurück zum Zitat Parac M, Grimme S (2003) TDDFT of the lowest excitation energies of polycyclic aromatic hydrocarbons. Chem Phys 292:11CrossRef Parac M, Grimme S (2003) TDDFT of the lowest excitation energies of polycyclic aromatic hydrocarbons. Chem Phys 292:11CrossRef
77.
Zurück zum Zitat Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) Assessment of functionals for TD-DFT calculations of singlet-triplet calculations. J Chem Theory 5:2420CrossRef Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) Assessment of functionals for TD-DFT calculations of singlet-triplet calculations. J Chem Theory 5:2420CrossRef
78.
Zurück zum Zitat Goerigk L, Grimme S (2010) Assessment of TD-DFT methods and of various spin scaled CIS (D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. J Chem Phys 132:184103CrossRef Goerigk L, Grimme S (2010) Assessment of TD-DFT methods and of various spin scaled CIS (D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. J Chem Phys 132:184103CrossRef
79.
Zurück zum Zitat Richard RM, Herbert JM (2011) Time-dependent density-functional description of the 1La state in polycyclic aromatic hydrocarbons: charge-transfer character in disguise? J Chem Theory Comput 7:1296CrossRef Richard RM, Herbert JM (2011) Time-dependent density-functional description of the 1La state in polycyclic aromatic hydrocarbons: charge-transfer character in disguise? J Chem Theory Comput 7:1296CrossRef
80.
Zurück zum Zitat Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree-Fock-Slater method. Theor Chim Acta (Berl) 46:1CrossRef Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree-Fock-Slater method. Theor Chim Acta (Berl) 46:1CrossRef
81.
Zurück zum Zitat Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in configuration interaction theory. Int J Quant Chem S13:225 Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in configuration interaction theory. Int J Quant Chem S13:225
82.
Zurück zum Zitat Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York
83.
Zurück zum Zitat Fischer H, Almlöf J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768CrossRef Fischer H, Almlöf J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768CrossRef
84.
Zurück zum Zitat Prochorow J, Tramer AJ (1967) Photoselection study of charge transfer complexes. J Chem Phys 47:775CrossRef Prochorow J, Tramer AJ (1967) Photoselection study of charge transfer complexes. J Chem Phys 47:775CrossRef
85.
Zurück zum Zitat Frey JE, Andrews AM, Ankoviac DG et al (1990) Charge-transfer complexes of tetracyanoethylene with cycloalkanes, alkenes, and alkynes and some of their aryl derivatives. J Org Chem 55:606CrossRef Frey JE, Andrews AM, Ankoviac DG et al (1990) Charge-transfer complexes of tetracyanoethylene with cycloalkanes, alkenes, and alkynes and some of their aryl derivatives. J Org Chem 55:606CrossRef
86.
Zurück zum Zitat Merrifield RE, Phillips WD (1958) Cyanocarbon chemistry. II.1 Spectroscopic studies of the molecular complexes of tetracyanoethylene. J Am Chem Soc 80:2778CrossRef Merrifield RE, Phillips WD (1958) Cyanocarbon chemistry. II.1 Spectroscopic studies of the molecular complexes of tetracyanoethylene. J Am Chem Soc 80:2778CrossRef
87.
Zurück zum Zitat Masnovi JM, Seddon EA, Kochi JK (1984) Electron transfer from anthracenes. Comparison of photoionization, charge-transfer excitation and electrochemical oxidation. Can J Chem 62:2552CrossRef Masnovi JM, Seddon EA, Kochi JK (1984) Electron transfer from anthracenes. Comparison of photoionization, charge-transfer excitation and electrochemical oxidation. Can J Chem 62:2552CrossRef
88.
Zurück zum Zitat Hanazaki I (1972) Vapor-phase electron donor–acceptor complexes of tetracyanoethylene and of sulfur dioxide. J Phys Chem 76:1982CrossRef Hanazaki I (1972) Vapor-phase electron donor–acceptor complexes of tetracyanoethylene and of sulfur dioxide. J Phys Chem 76:1982CrossRef
89.
Zurück zum Zitat Garcia-Cuesta I, Sanchez de Meras AMJ, Koch H (2003) Coupled cluster calculations of the vertical excitation energies of tetracyanoethylene. J Chem Phys 118:8216CrossRef Garcia-Cuesta I, Sanchez de Meras AMJ, Koch H (2003) Coupled cluster calculations of the vertical excitation energies of tetracyanoethylene. J Chem Phys 118:8216CrossRef
90.
Zurück zum Zitat Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200CrossRef Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200CrossRef
91.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRef
92.
Zurück zum Zitat Perdew JP, Wang Y (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822CrossRef Perdew JP, Wang Y (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822CrossRef
93.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRef
94.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef
95.
Zurück zum Zitat Hammer B, Hansen LB, Norskøv JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413CrossRef Hammer B, Hansen LB, Norskøv JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413CrossRef
96.
Zurück zum Zitat Zhang Y, Yang W (1998) Comment on “generalized gradient approximation made simple”. Phys Rev Lett 80:890CrossRef Zhang Y, Yang W (1998) Comment on “generalized gradient approximation made simple”. Phys Rev Lett 80:890CrossRef
97.
Zurück zum Zitat Gritsenko OV, Schipper PRT, Baerends EJ (1999) Approximation of the exchange-correlation Kohn–Sham potential with a statistical average of different orbital model potentials. Chem Phys Lett 302:199CrossRef Gritsenko OV, Schipper PRT, Baerends EJ (1999) Approximation of the exchange-correlation Kohn–Sham potential with a statistical average of different orbital model potentials. Chem Phys Lett 302:199CrossRef
98.
Zurück zum Zitat Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) Shape corrections to exchange-correlation Kohn-Sham potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 114:652CrossRef Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) Shape corrections to exchange-correlation Kohn-Sham potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 114:652CrossRef
99.
Zurück zum Zitat Filatov M (2013) Assessment of density functional methods for obtaining geometries at conical intersections in organic molecules. J Chem Theory Comput 9:4526CrossRef Filatov M (2013) Assessment of density functional methods for obtaining geometries at conical intersections in organic molecules. J Chem Theory Comput 9:4526CrossRef
100.
Zurück zum Zitat Ziegler T (1983) Extension of the statistical energy expression to multi-determinantal wave functions. In: Dahl JP, Avery J (eds) Density functional theory of atoms, molecules and solids. Plenum, New York Ziegler T (1983) Extension of the statistical energy expression to multi-determinantal wave functions. In: Dahl JP, Avery J (eds) Density functional theory of atoms, molecules and solids. Plenum, New York
Metadaten
Titel
Constricted Variational Density Functional Theory Approach to the Description of Excited States
verfasst von
Tom Ziegler
Mykhaylo Krykunov
Issaka Seidu
Young Choon Park
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/128_2014_611