Skip to main content
Erschienen in: Polymer Bulletin 5/2021

29.05.2020 | Original Paper

Construction of “core–shell” structure for improved thermal conductivity and mechanical properties of polyamide 6 composites

verfasst von: Renpeng Liu, Hui Han, Xiaotian Wu, Zhengying Liu, Wei Yang, Mingbo Yang

Erschienen in: Polymer Bulletin | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer-based thermal management composites have been widely utilized in the electronics industry for heat dissipation. Filled with thermal conductive fillers, binary blend polymer-based composite can obtain higher thermal conductivity than single polymer-based composite, however, with impaired mechanical performances. In this study, a tailor-made “core–shell” structure based on high-density polyethylene (PE), high-density polyethylene grafted with maleic anhydride (PE-g-MA) and multiwalled carbon nanotubes (CNTs) was fabricated and introduced into boron nitride (BN) filled polyamide 6 (PA6). In the “core–shell” structure, PE domains acted as the “core,” while CNTs and CNTs-localizing PE-g-MA constituted the “shell.” As-fabricated composite exhibited thermal conductivity of 1.65 W/m K, which was 36.5% higher than that of PA6/PE/BN composite at the same BN loading, and maintained excellent electrical insulating. Meanwhile, benefited from the novel “core–shell” structure, the mechanical properties of PA6/PE-g-MA/PE/CNTs/BN composite were comprehensively balanced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174CrossRef Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174CrossRef
2.
Zurück zum Zitat Waldrop MM (2016) The chips are down for Moore’s law. Nature 530:144–147CrossRef Waldrop MM (2016) The chips are down for Moore’s law. Nature 530:144–147CrossRef
3.
Zurück zum Zitat Wang J, Wu Y, Xue Y et al (2018) Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J Mater Chem C 6:1363–1369CrossRef Wang J, Wu Y, Xue Y et al (2018) Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J Mater Chem C 6:1363–1369CrossRef
4.
Zurück zum Zitat Zhou S, Luo W, Zou H et al (2015) Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite. J Compos Mater 50:327–337CrossRef Zhou S, Luo W, Zou H et al (2015) Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite. J Compos Mater 50:327–337CrossRef
5.
Zurück zum Zitat Feng C, Ni H, Chen J et al (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8:19732–19738CrossRef Feng C, Ni H, Chen J et al (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8:19732–19738CrossRef
6.
Zurück zum Zitat Yang J, Qi G, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702CrossRef Yang J, Qi G, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702CrossRef
7.
Zurück zum Zitat Shao L, Shi L, Li X et al (2016) Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos Sci Technol 135:83–91CrossRef Shao L, Shi L, Li X et al (2016) Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos Sci Technol 135:83–91CrossRef
8.
Zurück zum Zitat Morishita T, Matsushita M, Katagiri Y et al (2011) A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 21:5610–5614CrossRef Morishita T, Matsushita M, Katagiri Y et al (2011) A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 21:5610–5614CrossRef
9.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef
10.
Zurück zum Zitat Abdolbaqi MK, Azmi WH, Mamat R et al (2016) Experimental investigation of thermal conductivity and electrical conductivity of BioGlycol–water mixture based Al2O3 nanofluid. Appl Therm Eng 102:932–941CrossRef Abdolbaqi MK, Azmi WH, Mamat R et al (2016) Experimental investigation of thermal conductivity and electrical conductivity of BioGlycol–water mixture based Al2O3 nanofluid. Appl Therm Eng 102:932–941CrossRef
11.
Zurück zum Zitat Hu Y, Du G, Chen N (2016) A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos Sci Technol 124:36–43CrossRef Hu Y, Du G, Chen N (2016) A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos Sci Technol 124:36–43CrossRef
12.
Zurück zum Zitat Dai W, Yu J, Wang Y et al (2015) Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J Mater Chem A 3:4884–4891CrossRef Dai W, Yu J, Wang Y et al (2015) Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J Mater Chem A 3:4884–4891CrossRef
13.
Zurück zum Zitat Román-Manso B, Chevillotte Y, Osendi MI et al (2016) Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets. J Eur Ceram Soc 36:3987–3993CrossRef Román-Manso B, Chevillotte Y, Osendi MI et al (2016) Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets. J Eur Ceram Soc 36:3987–3993CrossRef
14.
Zurück zum Zitat Song WL, Wang P, Cao L et al (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501CrossRef Song WL, Wang P, Cao L et al (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501CrossRef
15.
Zurück zum Zitat Chung SL, Lin JS (2016) Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 21:670CrossRef Chung SL, Lin JS (2016) Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 21:670CrossRef
16.
Zurück zum Zitat Yuan C, Duan B, Li L et al (2015) Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl Mater Interfaces 7:13000–13006CrossRef Yuan C, Duan B, Li L et al (2015) Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl Mater Interfaces 7:13000–13006CrossRef
17.
Zurück zum Zitat Zhou S, Chen Y, Zou H et al (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91CrossRef Zhou S, Chen Y, Zou H et al (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91CrossRef
18.
Zurück zum Zitat Xu H, Zhou H, Chen X et al (2015) High thermal conductive composites based on flake graphite filled in a partial compatible polyamide 6/polypropylene. Polym Sci Ser A 57:644–655CrossRef Xu H, Zhou H, Chen X et al (2015) High thermal conductive composites based on flake graphite filled in a partial compatible polyamide 6/polypropylene. Polym Sci Ser A 57:644–655CrossRef
19.
Zurück zum Zitat García-Fonte X, Ares-Pernas A, Cerecedo C et al (2018) Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers. Polym Test 71:56–64CrossRef García-Fonte X, Ares-Pernas A, Cerecedo C et al (2018) Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers. Polym Test 71:56–64CrossRef
20.
Zurück zum Zitat Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823CrossRef Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823CrossRef
21.
Zurück zum Zitat Galloway JA, Jeon HK, Bell JR et al (2005) Block copolymer compatibilization of cocontinuous polymer blends. Polymer 46:183–191CrossRef Galloway JA, Jeon HK, Bell JR et al (2005) Block copolymer compatibilization of cocontinuous polymer blends. Polymer 46:183–191CrossRef
22.
Zurück zum Zitat Mallick S, Kar P, Khatua BB (2012) Morphology and properties of nylon 6 and high density polyethylene blends in presence of nanoclay and PE-g-MA. J Appl Polym Sci 123:1801–1811CrossRef Mallick S, Kar P, Khatua BB (2012) Morphology and properties of nylon 6 and high density polyethylene blends in presence of nanoclay and PE-g-MA. J Appl Polym Sci 123:1801–1811CrossRef
23.
Zurück zum Zitat Yin B, Li L, Zhou Y et al (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54:1938–1947CrossRef Yin B, Li L, Zhou Y et al (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54:1938–1947CrossRef
24.
Zurück zum Zitat Dou R, Shen C, Yin B et al (2015) Tailoring the impact behavior of polyamide 6 ternary blends via a hierarchical core–shell structure in situ formed in melt mixing. RSC Adv 5:14592–14602CrossRef Dou R, Shen C, Yin B et al (2015) Tailoring the impact behavior of polyamide 6 ternary blends via a hierarchical core–shell structure in situ formed in melt mixing. RSC Adv 5:14592–14602CrossRef
25.
Zurück zum Zitat Dou R, Wang W, Zhou Y et al (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129:253–262CrossRef Dou R, Wang W, Zhou Y et al (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129:253–262CrossRef
26.
Zurück zum Zitat Liu Z, Chen Z, Yu F (2019) Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol Energy Mater Sol Cells 192:72–80CrossRef Liu Z, Chen Z, Yu F (2019) Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol Energy Mater Sol Cells 192:72–80CrossRef
27.
Zurück zum Zitat Li L, Yin B, Zhou Y et al (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53:3043–3051CrossRef Li L, Yin B, Zhou Y et al (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53:3043–3051CrossRef
28.
Zurück zum Zitat Chiang CR, Chang FC (1997) Polymer blends of polyamide-6 (PA6) and poly(phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38:4807–4817CrossRef Chiang CR, Chang FC (1997) Polymer blends of polyamide-6 (PA6) and poly(phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38:4807–4817CrossRef
29.
Zurück zum Zitat Linares A, Canalda JC, Cagiao ME et al (2011) Conducting nanocomposites based on polyamide 6,6 and carbon nanofibers prepared by cryogenic grinding. Compos Sci Technol 71:1348–1352CrossRef Linares A, Canalda JC, Cagiao ME et al (2011) Conducting nanocomposites based on polyamide 6,6 and carbon nanofibers prepared by cryogenic grinding. Compos Sci Technol 71:1348–1352CrossRef
30.
Zurück zum Zitat Creton C, Kramer EJ, Hui CY et al (1992) Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25:3075–3088CrossRef Creton C, Kramer EJ, Hui CY et al (1992) Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25:3075–3088CrossRef
31.
Zurück zum Zitat Kim SJ, Shin BS, Hong JL et al (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080CrossRef Kim SJ, Shin BS, Hong JL et al (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080CrossRef
32.
Zurück zum Zitat Wang T, Liu D, Xiong C (2006) Synthesis of EVA-g-MAH and its compatibilization effect to PA11/PVC blends. J Mater Sci 42:3398–3407CrossRef Wang T, Liu D, Xiong C (2006) Synthesis of EVA-g-MAH and its compatibilization effect to PA11/PVC blends. J Mater Sci 42:3398–3407CrossRef
33.
Zurück zum Zitat Ke Z, Shi D, Yin J et al (2008) Facile method of preparing supertough polyamide 6 with low rubber content. Macromolecules 41:7264–7267CrossRef Ke Z, Shi D, Yin J et al (2008) Facile method of preparing supertough polyamide 6 with low rubber content. Macromolecules 41:7264–7267CrossRef
34.
Zurück zum Zitat Shi D, Liu E, Tan T et al (2013) Core/shell rubber toughened polyamide 6: an effective way to get good balance between toughness and yield strength. RSC Adv 3:21563–21569CrossRef Shi D, Liu E, Tan T et al (2013) Core/shell rubber toughened polyamide 6: an effective way to get good balance between toughness and yield strength. RSC Adv 3:21563–21569CrossRef
35.
Zurück zum Zitat Chen H, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen H, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
Metadaten
Titel
Construction of “core–shell” structure for improved thermal conductivity and mechanical properties of polyamide 6 composites
verfasst von
Renpeng Liu
Hui Han
Xiaotian Wu
Zhengying Liu
Wei Yang
Mingbo Yang
Publikationsdatum
29.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 5/2021
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03242-z

Weitere Artikel der Ausgabe 5/2021

Polymer Bulletin 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.