Skip to main content
Erschienen in: Cellulose 3/2018

05.02.2018 | Original Paper

Construction of novel cellulose/chitosan composite hydrogels and films and their applications

verfasst von: Meng He, Hao Chen, Xinjiang Zhang, Chengshuang Wang, Cheng Xu, Yuting Xue, Jinshan Wang, Panghu Zhou, Qingxin Zhao

Erschienen in: Cellulose | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, novel cellulose and chitosan composite hydrogels and films were constructed by directly dissolving cellulose and chitosan in alkali/urea aqueous solutions followed by a facile blending method and a mild coagulation process in an ethyl acetate gaseous phase. The structure and properties of the cellulose/chitosan composite materials were characterized by Field emission scanning electron microscopy, FTIR, wide angle X-ray diffraction, mechanical test and antibacterial experiment etc. The results indicated that there is strong hydrogen bonding interaction between cellulose and chitosan. The composite hydrogels exhibited homogeneous porous structure and the resultant films exhibited relative high light transmittance, indicating good miscibility between cellulose and chitosan due to their structure similarity. The mechanical strength increased with the cellulose content for the composite films, while the equilibrium swelling ratio, antibacterial activity and biocompatibility increased with the chitosan content. Facial mask shaped composite hydrogels with heavy metal ion adsorbability could be prepared facilely by using glass molds. Thus, the composite materials showed potential applications in the facial mask, antimicrobial packaging and water treatment fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anitha A, Sowmya S, Kumar P, Deepthi S, Chennazhi K, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRef Anitha A, Sowmya S, Kumar P, Deepthi S, Chennazhi K, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRef
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539CrossRef
Zurück zum Zitat Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44:3093–3101CrossRef Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44:3093–3101CrossRef
Zurück zum Zitat Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef
Zurück zum Zitat Cao Z, Luo X, Zhang H, Fu Z, Shen Z, Cai N, Xue Y, Yu F (2016) A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 23:1349–1361CrossRef Cao Z, Luo X, Zhang H, Fu Z, Shen Z, Cai N, Xue Y, Yu F (2016) A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 23:1349–1361CrossRef
Zurück zum Zitat Chaoming S, Yeongtarng S, Yawokuo T (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174CrossRef Chaoming S, Yeongtarng S, Yawokuo T (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174CrossRef
Zurück zum Zitat Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19:2783–2792CrossRef Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19:2783–2792CrossRef
Zurück zum Zitat Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRef Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRef
Zurück zum Zitat Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRef Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRef
Zurück zum Zitat Duan J, He X, Zhang L (2014) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341CrossRef Duan J, He X, Zhang L (2014) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341CrossRef
Zurück zum Zitat Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48:2706–2714CrossRef Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48:2706–2714CrossRef
Zurück zum Zitat Duan J, Liang X, Zhu K, Guo J, Zhang L (2016) Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 13:345–354CrossRef Duan J, Liang X, Zhu K, Guo J, Zhang L (2016) Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 13:345–354CrossRef
Zurück zum Zitat Fang Y, Zhang R, Duan B, Liu M, Lu A, Zhang L (2017) Recyclable universal solvents for chitin to chitosan with various degree of acetylation and construction of robust hydrogels. ACS Sustain Chem Eng 5:2725–2733CrossRef Fang Y, Zhang R, Duan B, Liu M, Lu A, Zhang L (2017) Recyclable universal solvents for chitin to chitosan with various degree of acetylation and construction of robust hydrogels. ACS Sustain Chem Eng 5:2725–2733CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink HP, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat Hasegawa M, Isogai A, Kuga S, Onabe F (1994) Preparation of cellulose–chitosan blend film using chloral/dimethylformamide. Polymer 35:983–987CrossRef Hasegawa M, Isogai A, Kuga S, Onabe F (1994) Preparation of cellulose–chitosan blend film using chloral/dimethylformamide. Polymer 35:983–987CrossRef
Zurück zum Zitat He M, Chang C, Peng N, Zhang L (2011) Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym 87:2512–2518CrossRef He M, Chang C, Peng N, Zhang L (2011) Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym 87:2512–2518CrossRef
Zurück zum Zitat He M, Xu M, Zhang L (2013) Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface. ACS Appl Mater Interfaces 5:585–591CrossRef He M, Xu M, Zhang L (2013) Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface. ACS Appl Mater Interfaces 5:585–591CrossRef
Zurück zum Zitat He M, Kwok RTK, Wang Z, Duan B, Tang BZ, Zhang L (2014a) Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic–hydrophilic interface interaction. ACS Appl Mater Interfaces 6:9508–9516CrossRef He M, Kwok RTK, Wang Z, Duan B, Tang BZ, Zhang L (2014a) Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic–hydrophilic interface interaction. ACS Appl Mater Interfaces 6:9508–9516CrossRef
Zurück zum Zitat He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014b) Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6:1872–1878CrossRef He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014b) Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6:1872–1878CrossRef
Zurück zum Zitat He M, Wang X, Wang Z, Chen L, Lu Y, Zhang X, Li M, Liu Z, Zhang Y, Xia H, Zhang L (2017a) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5:9126–9135CrossRef He M, Wang X, Wang Z, Chen L, Lu Y, Zhang X, Li M, Liu Z, Zhang Y, Xia H, Zhang L (2017a) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5:9126–9135CrossRef
Zurück zum Zitat He M, Zhang X, Yao W, Wang C, Shi L, Zhou P (2017b) Construction of alternate layered chitosan/alginate composite hydrogels and their properties. Mater Lett 200:43–46CrossRef He M, Zhang X, Yao W, Wang C, Shi L, Zhou P (2017b) Construction of alternate layered chitosan/alginate composite hydrogels and their properties. Mater Lett 200:43–46CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1992) Preparation of cellulose–chitosan polymer blends. Carbohydr Polym 19:25–28CrossRef Isogai A, Atalla RH (1992) Preparation of cellulose–chitosan polymer blends. Carbohydr Polym 19:25–28CrossRef
Zurück zum Zitat Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef
Zurück zum Zitat Jedvert K, Heinze T (2017) Cellulose modification and shaping—a review. J Polym Eng 37:845–860CrossRef Jedvert K, Heinze T (2017) Cellulose modification and shaping—a review. J Polym Eng 37:845–860CrossRef
Zurück zum Zitat Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275CrossRef Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275CrossRef
Zurück zum Zitat Li C, He M, Tong Z, Li Y, Sheng W, Luo L, Tong Y, Yu H, Huselstein C, Chen Y (2016a) Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique. RSC Adv 6:52528–52538CrossRef Li C, He M, Tong Z, Li Y, Sheng W, Luo L, Tong Y, Yu H, Huselstein C, Chen Y (2016a) Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique. RSC Adv 6:52528–52538CrossRef
Zurück zum Zitat Li S, Cui Z, Zhang L, He B, Li J (2016b) The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J Membr Sci 513:1–11CrossRef Li S, Cui Z, Zhang L, He B, Li J (2016b) The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J Membr Sci 513:1–11CrossRef
Zurück zum Zitat Lima IS, Lazarin AM, Airoldi C (2005) Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int J Biol Macromol 36:79–83CrossRef Lima IS, Lazarin AM, Airoldi C (2005) Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int J Biol Macromol 36:79–83CrossRef
Zurück zum Zitat Mokhothu TH, John MJ (2015) Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr Polym 131:337–354CrossRef Mokhothu TH, John MJ (2015) Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr Polym 131:337–354CrossRef
Zurück zum Zitat Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712CrossRef Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712CrossRef
Zurück zum Zitat Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835CrossRef Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835CrossRef
Zurück zum Zitat Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760CrossRef Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760CrossRef
Zurück zum Zitat Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromol 10:1597–1602CrossRef Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromol 10:1597–1602CrossRef
Zurück zum Zitat Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRef Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRef
Zurück zum Zitat Rejinold NS, Chennazhi KP, Tamura H, Nair SV, Rangasamy J (2011) Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl Mater Interfaces 3:3654–3665CrossRef Rejinold NS, Chennazhi KP, Tamura H, Nair SV, Rangasamy J (2011) Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl Mater Interfaces 3:3654–3665CrossRef
Zurück zum Zitat Rubentheren V, Ward TA, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef Rubentheren V, Ward TA, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef
Zurück zum Zitat Saito T, Oaki Y, Nishimura T, Isogai A, Kato T (2014) Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater Horiz 1:321–325CrossRef Saito T, Oaki Y, Nishimura T, Isogai A, Kato T (2014) Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater Horiz 1:321–325CrossRef
Zurück zum Zitat Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q (2008) Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B 112:3876–3881CrossRef Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q (2008) Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B 112:3876–3881CrossRef
Zurück zum Zitat Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686CrossRef Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686CrossRef
Zurück zum Zitat Wendler F, Kosan B, Krieg M, Meister F (2009) Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol Symp 280:112–122CrossRef Wendler F, Kosan B, Krieg M, Meister F (2009) Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol Symp 280:112–122CrossRef
Zurück zum Zitat Xiong X, Duan J, Zou W, He X, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membr Sci 363:96–102CrossRef Xiong X, Duan J, Zou W, He X, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membr Sci 363:96–102CrossRef
Zurück zum Zitat Xu Y, Ren X, Hanna MA (2010) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691CrossRef Xu Y, Ren X, Hanna MA (2010) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691CrossRef
Zurück zum Zitat Yan T, Cheng F, Wei X, Huang Y, He J (2017) Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr Polym 170:271–280CrossRef Yan T, Cheng F, Wei X, Huang Y, He J (2017) Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr Polym 170:271–280CrossRef
Zurück zum Zitat Yang R, Li H, Huang M, Yang H, Li A (2016) A review on chitosan-based flocculants and their applications in water treatment. Water Res 95:59–89CrossRef Yang R, Li H, Huang M, Yang H, Li A (2016) A review on chitosan-based flocculants and their applications in water treatment. Water Res 95:59–89CrossRef
Zurück zum Zitat Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287CrossRef Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287CrossRef
Zurück zum Zitat Zhou Y, Luo X, Huang L, Lin S, Chen L (2015) Development of ionic liquid-mediated antibacterial cellulose–chitosan films. J Biobased Mater Bio 9:389–395CrossRef Zhou Y, Luo X, Huang L, Lin S, Chen L (2015) Development of ionic liquid-mediated antibacterial cellulose–chitosan films. J Biobased Mater Bio 9:389–395CrossRef
Metadaten
Titel
Construction of novel cellulose/chitosan composite hydrogels and films and their applications
verfasst von
Meng He
Hao Chen
Xinjiang Zhang
Chengshuang Wang
Cheng Xu
Yuting Xue
Jinshan Wang
Panghu Zhou
Qingxin Zhao
Publikationsdatum
05.02.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1683-9

Weitere Artikel der Ausgabe 3/2018

Cellulose 3/2018 Zur Ausgabe