Skip to main content
Erschienen in: Quantum Information Processing 11/2018

01.11.2018

Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit

verfasst von: Shang-Ping Ding, Lan Zhou, Wei Zhong, Yu-Bo Sheng

Erschienen in: Quantum Information Processing | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Concatenated Greenberger–Horne–Zeilinger (C-GHZ) state is a kind of logic qubit which is robust in noisy environment. In this paper, we encode the C-GHZ state as the logic qubit and design two kinds of quantum gates for such logic qubit. The first kind is the single logic-qubit gate which contains the logic-qubit bit-flip gate and phase-flip gate. The second kind is the logic-qubit controlled-not (CNOT) gate. We exploit the single quantum gate for physical qubit, such as bit-flip gate and phase-flip gate, and two-qubit CNOT gate to realize the logic-qubit gate. We also calculated the success probability of such logic-qubit gate based on the imperfect physical quantum gate. This protocol may be useful for future quantum computation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRef
3.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. Bangalore, India. IEEE: New York, USA (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. Bangalore, India. IEEE: New York, USA (1984)
5.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
6.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
7.
Zurück zum Zitat Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRef Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRef
8.
Zurück zum Zitat Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light. Sci. Appl. 5, e16144 (2016)CrossRef Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light. Sci. Appl. 5, e16144 (2016)CrossRef
9.
Zurück zum Zitat Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
10.
Zurück zum Zitat Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)CrossRef Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)CrossRef
11.
Zurück zum Zitat Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef
12.
Zurück zum Zitat Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)CrossRef Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)CrossRef
13.
Zurück zum Zitat Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRef Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRef
14.
Zurück zum Zitat Makhlin, Y., Schöen, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)ADSCrossRef Makhlin, Y., Schöen, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)ADSCrossRef
15.
Zurück zum Zitat Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., et al.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–52 (2008)ADSCrossRef Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., et al.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–52 (2008)ADSCrossRef
16.
Zurück zum Zitat Jiang, L., Taylor, J.M., Søensen, A.S., Lukin, M.D.: Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007)ADSCrossRef Jiang, L., Taylor, J.M., Søensen, A.S., Lukin, M.D.: Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007)ADSCrossRef
17.
Zurück zum Zitat Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)ADSCrossRef Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)ADSCrossRef
18.
Zurück zum Zitat Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)ADSCrossRef Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)ADSCrossRef
19.
Zurück zum Zitat Bang, J., Lee, S.W., Jeong, H.: Protocol for secure quantum machine learning at a distant place. Quant. Inf. Process. 14, 3933–3947 (2015)ADSMathSciNetCrossRef Bang, J., Lee, S.W., Jeong, H.: Protocol for secure quantum machine learning at a distant place. Quant. Inf. Process. 14, 3933–3947 (2015)ADSMathSciNetCrossRef
20.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)CrossRef Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)CrossRef
21.
Zurück zum Zitat Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRef
22.
Zurück zum Zitat Grover, L.K.: Quantum mechanics helps in serching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)ADSCrossRef Grover, L.K.: Quantum mechanics helps in serching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)ADSCrossRef
23.
Zurück zum Zitat Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)ADSCrossRef Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)ADSCrossRef
25.
Zurück zum Zitat Long, G.L., Li, X., Sun, Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294, 243–152 (2002)MathSciNetCrossRef Long, G.L., Li, X., Sun, Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294, 243–152 (2002)MathSciNetCrossRef
26.
Zurück zum Zitat Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRef Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRef
27.
Zurück zum Zitat Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)ADSCrossRef Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)ADSCrossRef
29.
Zurück zum Zitat Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRef Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRef
30.
Zurück zum Zitat Zhou, J., Liu, B.J., Hong, Z.P., Xue, Z.Y.: Fast holonomic quantum computation based on solid-state spins with all-optical control. Sci. China Phys. Mech. Astron. 61, 010312 (2018)ADSCrossRef Zhou, J., Liu, B.J., Hong, Z.P., Xue, Z.Y.: Fast holonomic quantum computation based on solid-state spins with all-optical control. Sci. China Phys. Mech. Astron. 61, 010312 (2018)ADSCrossRef
31.
Zurück zum Zitat Xu, G.F.: Nonadiabatic holonomic quantum computation based on nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 61, 010331 (2018)ADSCrossRef Xu, G.F.: Nonadiabatic holonomic quantum computation based on nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 61, 010331 (2018)ADSCrossRef
32.
Zurück zum Zitat Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)ADSCrossRef Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)ADSCrossRef
33.
Zurück zum Zitat Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)ADSCrossRef Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)ADSCrossRef
34.
Zurück zum Zitat Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)ADSCrossRef Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)ADSCrossRef
35.
Zurück zum Zitat He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express. 23, 21671–21677 (2015)ADSCrossRef He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express. 23, 21671–21677 (2015)ADSCrossRef
36.
Zurück zum Zitat Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quant. Inf. Process. 17, 243 (2018)ADSMathSciNetCrossRef Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quant. Inf. Process. 17, 243 (2018)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRef Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRef
38.
Zurück zum Zitat Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRef
39.
Zurück zum Zitat Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1995)ADSCrossRef Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1995)ADSCrossRef
41.
Zurück zum Zitat Lai, C.Y., Zeng, Y.C., Brun, T.A.: Fault-tolerant preparation of stabilizer states for quantum Calderbank–Shor–Steane codes by classical error-correcting codes. Phys. Rev. Lett. 95, 032339 (2017) Lai, C.Y., Zeng, Y.C., Brun, T.A.: Fault-tolerant preparation of stabilizer states for quantum Calderbank–Shor–Steane codes by classical error-correcting codes. Phys. Rev. Lett. 95, 032339 (2017)
42.
Zurück zum Zitat Ralph, T.C., Hayes, A.J.F., Gilchrist, Alexei: Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005)ADSCrossRef Ralph, T.C., Hayes, A.J.F., Gilchrist, Alexei: Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005)ADSCrossRef
43.
Zurück zum Zitat Gilchrist, A., Hayes, A.J.F., Ralph, T.C.: Efficient parity-encoded optical quantum computing. Phys. Rev. A 75, 052328 (2007)ADSCrossRef Gilchrist, A., Hayes, A.J.F., Ralph, T.C.: Efficient parity-encoded optical quantum computing. Phys. Rev. A 75, 052328 (2007)ADSCrossRef
44.
Zurück zum Zitat Borregaard, J.S., Søensen, A.S., Cirac, J.I., Lukin, M.D.: Efficient quantum computation in a network with probabilistic gates and logical encoding. Phys. Rev. A 95, 042312 (2017)ADSCrossRef Borregaard, J.S., Søensen, A.S., Cirac, J.I., Lukin, M.D.: Efficient quantum computation in a network with probabilistic gates and logical encoding. Phys. Rev. A 95, 042312 (2017)ADSCrossRef
45.
Zurück zum Zitat Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)ADSCrossRef Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)ADSCrossRef
46.
Zurück zum Zitat Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, Kea: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777 (2012)ADSCrossRef Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, Kea: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777 (2012)ADSCrossRef
47.
Zurück zum Zitat Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)ADSCrossRef Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)ADSCrossRef
48.
Zurück zum Zitat Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)ADSCrossRef Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)ADSCrossRef
49.
Zurück zum Zitat Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)ADSCrossRef Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)ADSCrossRef
50.
Zurück zum Zitat Li, L., Zou, C.L., Albert, V.V., Muralidharan, S., Girvin, S.M., Jiang, L.: Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys. Rev. Lett. 119, 030502 (2017)ADSCrossRef Li, L., Zou, C.L., Albert, V.V., Muralidharan, S., Girvin, S.M., Jiang, L.: Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys. Rev. Lett. 119, 030502 (2017)ADSCrossRef
51.
Zurück zum Zitat Fröewis, F., Düer, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)ADSCrossRef Fröewis, F., Düer, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)ADSCrossRef
52.
Zurück zum Zitat Fröwis, F., Düer, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)ADSCrossRef Fröwis, F., Düer, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)ADSCrossRef
53.
Zurück zum Zitat Kesting, F., Fröewis, F., Düer, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)ADSCrossRef Kesting, F., Fröewis, F., Düer, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)ADSCrossRef
54.
Zurück zum Zitat Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)ADSCrossRef Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)ADSCrossRef
55.
Zurück zum Zitat Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)ADSCrossRef Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)ADSCrossRef
56.
Zurück zum Zitat Guo, R., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quant. Inf. Process. 16, 68 (2017)ADSMathSciNetCrossRef Guo, R., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quant. Inf. Process. 16, 68 (2017)ADSMathSciNetCrossRef
57.
Zurück zum Zitat Chen, S.S., Zhou, L., Sheng, Y.B.: Generation of an arbitrary concatenated Greenberger–Horne–Zeilinger state with single photons. Laser Phys. Lett. 14, 025203 (2017)ADSCrossRef Chen, S.S., Zhou, L., Sheng, Y.B.: Generation of an arbitrary concatenated Greenberger–Horne–Zeilinger state with single photons. Laser Phys. Lett. 14, 025203 (2017)ADSCrossRef
58.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)ADSCrossRef Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)ADSCrossRef
59.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10 (2017)ADSMathSciNetCrossRef Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10 (2017)ADSMathSciNetCrossRef
60.
Zurück zum Zitat Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quant. Inf. Process. 14, 4131 (2015)ADSMathSciNetCrossRef Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quant. Inf. Process. 14, 4131 (2015)ADSMathSciNetCrossRef
61.
Zurück zum Zitat Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quant. Inf. Process. 15, 1669 (2016)ADSMathSciNetCrossRef Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quant. Inf. Process. 15, 1669 (2016)ADSMathSciNetCrossRef
62.
Zurück zum Zitat Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quant. Inf. Process. 17, 255 (2018)ADSMathSciNetCrossRef Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quant. Inf. Process. 17, 255 (2018)ADSMathSciNetCrossRef
63.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrodinger’s Cat state. EPL 109, 40009 (2015)ADSCrossRef Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrodinger’s Cat state. EPL 109, 40009 (2015)ADSCrossRef
64.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)ADSCrossRef Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)ADSCrossRef
65.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)ADSCrossRef Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)ADSCrossRef
66.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)ADSCrossRef Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)ADSCrossRef
67.
Zurück zum Zitat Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled not gate. Phys. Rev. Lett. 93, 250502 (2004)ADSCrossRef Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled not gate. Phys. Rev. Lett. 93, 250502 (2004)ADSCrossRef
68.
Zurück zum Zitat Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)CrossRef Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)CrossRef
Metadaten
Titel
Construction of quantum gates for concatenated Greenberger–Horne–Zeilinger-type logic qubit
verfasst von
Shang-Ping Ding
Lan Zhou
Wei Zhong
Yu-Bo Sheng
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2077-5

Weitere Artikel der Ausgabe 11/2018

Quantum Information Processing 11/2018 Zur Ausgabe

Neuer Inhalt