Skip to main content
Erschienen in: Polymer Bulletin 2/2016

25.08.2015 | Original Paper

Construction of reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl structure and poly(ethylene glycol)

verfasst von: Tatsuya Yuki, Morio Yonekawa, Kozo Matsumoto, Ikuyoshi Tomita, Takeshi Endo

Erschienen in: Polymer Bulletin | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we report a novel reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl moieties in its side chains and poly(ethylene glycol) (PEG). A mixture of the tricarbonyl polymer and PEG (0.1 equiv of OH groups relative to the vicinal tricarbonyl moieties) in CH2Cl2 spontaneously turned into an orange-colored gel, in which a network structure was formed through hemiketal linkages. Conversely, the resulting networked polymer could be decrosslinked by treatment with water-containing solvent to recover the linear vicinal tricarbonyl polymer as its hydrate in 90 % yield. Following dehydration process by heating at 100 °C under reduced pressure regenerated the original vicinal tricarbonyl polymer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanda F, Endo T (1998) Cationic equilibrium ring-opening polymerisation of bicyclic monomers and its application to chemical recycling of the new polymer material. Polym Recycl 3:159–163 Sanda F, Endo T (1998) Cationic equilibrium ring-opening polymerisation of bicyclic monomers and its application to chemical recycling of the new polymer material. Polym Recycl 3:159–163
2.
Zurück zum Zitat Endo T, Nagai D (2005) A novel construction of ring-opening polymerization and chemical recycling system. Macromol Symp 226:79–86CrossRef Endo T, Nagai D (2005) A novel construction of ring-opening polymerization and chemical recycling system. Macromol Symp 226:79–86CrossRef
3.
Zurück zum Zitat Takata T (2006) Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J 38:1–20CrossRef Takata T (2006) Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J 38:1–20CrossRef
4.
Zurück zum Zitat Nishida H (2011) Development of materials and technologies for control of polymer recycling. Polym J 43:435–447CrossRef Nishida H (2011) Development of materials and technologies for control of polymer recycling. Polym J 43:435–447CrossRef
5.
Zurück zum Zitat Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430CrossRef Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430CrossRef
6.
Zurück zum Zitat Kloxin CJ, Scott TF, Adzima BJ, Bowman CN (2010) Covalent Adaptable Networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43:2643–2653CrossRef Kloxin CJ, Scott TF, Adzima BJ, Bowman CN (2010) Covalent Adaptable Networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43:2643–2653CrossRef
7.
Zurück zum Zitat Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143CrossRef Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143CrossRef
8.
Zurück zum Zitat Urban MW (2012) Dynamic materials: the chemistry of self-healing. Nat Chem 4:80–82CrossRef Urban MW (2012) Dynamic materials: the chemistry of self-healing. Nat Chem 4:80–82CrossRef
9.
Zurück zum Zitat Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef
10.
Zurück zum Zitat Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807CrossRef Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807CrossRef
11.
Zurück zum Zitat Reutenauer P, Buhler E, Boul PJ, Candau SJ, Lehn J-M (2009) Room temperature dynamic polymers based on Diels–Alder chemistry. Chem Eur J 15:1893–1900CrossRef Reutenauer P, Buhler E, Boul PJ, Candau SJ, Lehn J-M (2009) Room temperature dynamic polymers based on Diels–Alder chemistry. Chem Eur J 15:1893–1900CrossRef
12.
Zurück zum Zitat Inglis AJ, Nebhani L, Altintas O, Schmidt FG, Barner-Kowollik C (2010) Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels–Alder chemistry. Macromolecules 43:5515–5520CrossRef Inglis AJ, Nebhani L, Altintas O, Schmidt FG, Barner-Kowollik C (2010) Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels–Alder chemistry. Macromolecules 43:5515–5520CrossRef
13.
Zurück zum Zitat Ishida K, Weibel V, Yoshie N (2011) Substituent effect on structure and physical properties of semicrystalline Diels–Alder network polymers. Polymer 52:2877–2882CrossRef Ishida K, Weibel V, Yoshie N (2011) Substituent effect on structure and physical properties of semicrystalline Diels–Alder network polymers. Polymer 52:2877–2882CrossRef
14.
Zurück zum Zitat Yoshie N, Saito S, Oya N (2011) A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52:6074–6079CrossRef Yoshie N, Saito S, Oya N (2011) A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52:6074–6079CrossRef
15.
Zurück zum Zitat Imbesi PM, Fidge C, Raymond JE, Cauët SI, Wooley KL (2012) Model Diels–Alder studies for the creation of amphiphilic cross-linked networks as healable, antibiofouling coatings. ACS Macro Lett 1:473–477CrossRef Imbesi PM, Fidge C, Raymond JE, Cauët SI, Wooley KL (2012) Model Diels–Alder studies for the creation of amphiphilic cross-linked networks as healable, antibiofouling coatings. ACS Macro Lett 1:473–477CrossRef
16.
Zurück zum Zitat Oku T, Furusho Y, Takata T (2004) A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed Engl 43:966–969CrossRef Oku T, Furusho Y, Takata T (2004) A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed Engl 43:966–969CrossRef
17.
Zurück zum Zitat Bilig T, Oku T, Furusho Y, Koyama Y, Asai S, Takata T (2008) Polyrotaxane networks formed via rotaxanation utilizing dynamic covalent chemistry of disulfide. Macromolecules 41:8496–8503CrossRef Bilig T, Oku T, Furusho Y, Koyama Y, Asai S, Takata T (2008) Polyrotaxane networks formed via rotaxanation utilizing dynamic covalent chemistry of disulfide. Macromolecules 41:8496–8503CrossRef
18.
Zurück zum Zitat Yoon JA, Kamada J, Koynov K, Mohin J, Nicolaÿ R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2012) Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142–149CrossRef Yoon JA, Kamada J, Koynov K, Mohin J, Nicolaÿ R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2012) Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142–149CrossRef
19.
Zurück zum Zitat Skene WG, Lehn J-M (2004) Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc Natl Acad Sci USA 101:8270–8275CrossRef Skene WG, Lehn J-M (2004) Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc Natl Acad Sci USA 101:8270–8275CrossRef
20.
Zurück zum Zitat Folmer-Andersen JF, Lehn J-M (2011) Thermoresponsive Dynamers: thermally induced, reversible chain elongation of amphiphilic poly(acylhydrazones). J Am Chem Soc 133:10966–10973CrossRef Folmer-Andersen JF, Lehn J-M (2011) Thermoresponsive Dynamers: thermally induced, reversible chain elongation of amphiphilic poly(acylhydrazones). J Am Chem Soc 133:10966–10973CrossRef
21.
Zurück zum Zitat Kanazawa H, Higuchi M, Yamamoto K (2006) Synthesis and chemical degradation of thermostable polyamide with imine bond for chemical recycling. Macromolecules 39:138–144CrossRef Kanazawa H, Higuchi M, Yamamoto K (2006) Synthesis and chemical degradation of thermostable polyamide with imine bond for chemical recycling. Macromolecules 39:138–144CrossRef
22.
Zurück zum Zitat Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent crosslinked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43:1191–1194CrossRef Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent crosslinked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43:1191–1194CrossRef
23.
Zurück zum Zitat Higaki Y, Otsuka H, Takahara A (2006) A thermodynamic polymer crosslinking system based on radically exchangeable covalent bonds. Macromolecules 39:2121–2125CrossRef Higaki Y, Otsuka H, Takahara A (2006) A thermodynamic polymer crosslinking system based on radically exchangeable covalent bonds. Macromolecules 39:2121–2125CrossRef
24.
Zurück zum Zitat Amamoto Y, Higaki Y, Matsuda Y, Otsuka H, Takahara A (2007) Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. J Am Chem Soc 129:13298–13304CrossRef Amamoto Y, Higaki Y, Matsuda Y, Otsuka H, Takahara A (2007) Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. J Am Chem Soc 129:13298–13304CrossRef
25.
Zurück zum Zitat Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H (2012) Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed Engl 51:1138–1142CrossRef Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H (2012) Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed Engl 51:1138–1142CrossRef
26.
Zurück zum Zitat Iwamura T, Sakaguchi M (2008) A novel de-cross-linking system from cross-linked polymer to linear polymer utilizing pressure or visible light irradiation. Macromolecules 41:8995–8999CrossRef Iwamura T, Sakaguchi M (2008) A novel de-cross-linking system from cross-linked polymer to linear polymer utilizing pressure or visible light irradiation. Macromolecules 41:8995–8999CrossRef
27.
Zurück zum Zitat Jackson PO, O’Neill M, Duffy WL, Hindmarsh P, Kelly SM, Owen GJ (2001) An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals. Chem Mater 13:694–703CrossRef Jackson PO, O’Neill M, Duffy WL, Hindmarsh P, Kelly SM, Owen GJ (2001) An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals. Chem Mater 13:694–703CrossRef
28.
Zurück zum Zitat Chung C-M, Roh Y-S, Cho S-Y, Kim J-G (2004) Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition. Chem Mater 16:3982–3984CrossRef Chung C-M, Roh Y-S, Cho S-Y, Kim J-G (2004) Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition. Chem Mater 16:3982–3984CrossRef
29.
Zurück zum Zitat Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ϵ-caprolactone)s showing shape-memory properties. J Polym Sci Part A Polym Chem 47:2422–2433CrossRef Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ϵ-caprolactone)s showing shape-memory properties. J Polym Sci Part A Polym Chem 47:2422–2433CrossRef
30.
Zurück zum Zitat Oya N, Sukarsaatmadja P, Ishida K, Yoshie K (2012) Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym J 44:724–729CrossRef Oya N, Sukarsaatmadja P, Ishida K, Yoshie K (2012) Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym J 44:724–729CrossRef
31.
Zurück zum Zitat Wagener KB, Engle LP (1991) Thermally reversible polymer linkages. 3. Covalently crosslinked poly(azlactone). Macromolecules 24:6809–6815CrossRef Wagener KB, Engle LP (1991) Thermally reversible polymer linkages. 3. Covalently crosslinked poly(azlactone). Macromolecules 24:6809–6815CrossRef
32.
Zurück zum Zitat Endo T, Suzuki T, Sanda F, Takata T (1996) A novel approach for the chemical recycling of polymeric materials: the network polymer ⇄ bifunctional monomer reversible system. Macromolecules 29:3315–3316CrossRef Endo T, Suzuki T, Sanda F, Takata T (1996) A novel approach for the chemical recycling of polymeric materials: the network polymer ⇄ bifunctional monomer reversible system. Macromolecules 29:3315–3316CrossRef
33.
Zurück zum Zitat Endo T, Suzuki T, Sanda F, Takata T (1996) A novel network polymer ⇄ linear polymer reversible system. a new crosslinking system consisting of a reversible crosslinking-depolymerization of a polymer having a spiro orthoester moiety in the side chain. Macromolecules 29:4819CrossRef Endo T, Suzuki T, Sanda F, Takata T (1996) A novel network polymer ⇄ linear polymer reversible system. a new crosslinking system consisting of a reversible crosslinking-depolymerization of a polymer having a spiro orthoester moiety in the side chain. Macromolecules 29:4819CrossRef
34.
Zurück zum Zitat Nakamura T, Ochiai B, Endo T (2005) Efficient chemical recycling system of networked polymer: de-cross-linking of cross-linked polymer obtained from bis(five-membered cyclic dithiocarbonate). Macromolecules 38:4065–4066CrossRef Nakamura T, Ochiai B, Endo T (2005) Efficient chemical recycling system of networked polymer: de-cross-linking of cross-linked polymer obtained from bis(five-membered cyclic dithiocarbonate). Macromolecules 38:4065–4066CrossRef
35.
Zurück zum Zitat Miyagawa T, Shimizu M, Sanda F, Endo T (2005) Six-membered cyclic carbonate having styrene moiety as a chemically recyclable monomer. construction of novel cross-linking-de-cross-linking system of network polymers. Macromolecules 38:7944–7949CrossRef Miyagawa T, Shimizu M, Sanda F, Endo T (2005) Six-membered cyclic carbonate having styrene moiety as a chemically recyclable monomer. construction of novel cross-linking-de-cross-linking system of network polymers. Macromolecules 38:7944–7949CrossRef
36.
Zurück zum Zitat Kawaguchi AW, Sudo A, Endo T (2013) Polymerization-depolymerization system based on reversible addition-dissociation reaction of 1,3-benzoxazine with thiol. ACS Macro Lett 2:1–4CrossRef Kawaguchi AW, Sudo A, Endo T (2013) Polymerization-depolymerization system based on reversible addition-dissociation reaction of 1,3-benzoxazine with thiol. ACS Macro Lett 2:1–4CrossRef
37.
Zurück zum Zitat Rubin MB, Gleiter R (2000) The chemistry of vicinal polycarbonyl compounds. Chem Rev 100:1121–1164CrossRef Rubin MB, Gleiter R (2000) The chemistry of vicinal polycarbonyl compounds. Chem Rev 100:1121–1164CrossRef
38.
Zurück zum Zitat Rubin MB (1975) Chemistry of vicinal polyketones. Chem Rev 75:177–202CrossRef Rubin MB (1975) Chemistry of vicinal polyketones. Chem Rev 75:177–202CrossRef
39.
Zurück zum Zitat Wasserman HH, Parr J (2004) The chemistry of vicinal tricarbonyls and related systems. Acc Chem Res 37:687–701CrossRef Wasserman HH, Parr J (2004) The chemistry of vicinal tricarbonyls and related systems. Acc Chem Res 37:687–701CrossRef
40.
Zurück zum Zitat Hirama M, Fukazawa Y, Ito S (1978) Isolation, characterization and molecular structure of o-tropoquinone. Tetrahedron Lett 19:1299–1302CrossRef Hirama M, Fukazawa Y, Ito S (1978) Isolation, characterization and molecular structure of o-tropoquinone. Tetrahedron Lett 19:1299–1302CrossRef
41.
Zurück zum Zitat Moubasher R, Othman AM (1950) Reactions of alloxan and alloxantine. Structure of alloxantine and hydrindantine. J Am Chem Soc 72:2667–2669CrossRef Moubasher R, Othman AM (1950) Reactions of alloxan and alloxantine. Structure of alloxantine and hydrindantine. J Am Chem Soc 72:2667–2669CrossRef
42.
Zurück zum Zitat Lepley AR, Thelman JP (1966) Charge-transfer acceptors. Indantrione. Tetrahedron 22:101–110CrossRef Lepley AR, Thelman JP (1966) Charge-transfer acceptors. Indantrione. Tetrahedron 22:101–110CrossRef
43.
Zurück zum Zitat Netto-Ferreira JC, Silva MT, Puget FP (1988) Photochemistry of cyclic vicinal tricarbonyl compounds. [2 + 2] Photocycloaddition of 1,2,3-indanetrione to electron rich olefins. J Photochem Photobiol A Chem 119:165–170CrossRef Netto-Ferreira JC, Silva MT, Puget FP (1988) Photochemistry of cyclic vicinal tricarbonyl compounds. [2 + 2] Photocycloaddition of 1,2,3-indanetrione to electron rich olefins. J Photochem Photobiol A Chem 119:165–170CrossRef
44.
Zurück zum Zitat Silva MT, Braz-Filho R, Netto-Ferreira JC (2000) Photochemistry of cyclic vicinal tricarbonyl compounds. Photochemical reaction of 1,2,3-indanetrione with 2,3-dimethyl-2-butene: hydrogen abstraction and photocycloaddition. J Braz Chem Soc 11:479–485CrossRef Silva MT, Braz-Filho R, Netto-Ferreira JC (2000) Photochemistry of cyclic vicinal tricarbonyl compounds. Photochemical reaction of 1,2,3-indanetrione with 2,3-dimethyl-2-butene: hydrogen abstraction and photocycloaddition. J Braz Chem Soc 11:479–485CrossRef
45.
Zurück zum Zitat Mahran MR, Abdou WM, Sidky MM, Wamhoff H (1987) Singlet oxygen photolysis of dihaloketones. A facile and efficient approach to vicinal triketones and their monohydrates. Synthesis 5:506–508CrossRef Mahran MR, Abdou WM, Sidky MM, Wamhoff H (1987) Singlet oxygen photolysis of dihaloketones. A facile and efficient approach to vicinal triketones and their monohydrates. Synthesis 5:506–508CrossRef
46.
Zurück zum Zitat Sharp DB, Hoffman HA (1950) Chemistry of vicinal tricarbonyl compounds. I. Condensation reactions of 1,3-diphenyl-1,2,3-propanetrione. J Am Chem Soc 72:4311–4313CrossRef Sharp DB, Hoffman HA (1950) Chemistry of vicinal tricarbonyl compounds. I. Condensation reactions of 1,3-diphenyl-1,2,3-propanetrione. J Am Chem Soc 72:4311–4313CrossRef
47.
Zurück zum Zitat Roberts JD, Smith DR, Lee CC (1951) Decarbonylation of diphenyl triketone. J Am Chem Soc 73:618–625CrossRef Roberts JD, Smith DR, Lee CC (1951) Decarbonylation of diphenyl triketone. J Am Chem Soc 73:618–625CrossRef
48.
Zurück zum Zitat Gill GB, Idris MSH, Kirollos KS (1992) Ene reactions of indane-1,2,3-trione (a super-enophile) and related vicinal tricarbonyl systems. J Chem Soc Perkin Trans 1:2355–2365CrossRef Gill GB, Idris MSH, Kirollos KS (1992) Ene reactions of indane-1,2,3-trione (a super-enophile) and related vicinal tricarbonyl systems. J Chem Soc Perkin Trans 1:2355–2365CrossRef
49.
Zurück zum Zitat Schönberg A, Singer E (1970) Non-catalyzed aldol additions with hydrate-forming keto carbonyl compounds. Chem Ber 103:3871–3884CrossRef Schönberg A, Singer E (1970) Non-catalyzed aldol additions with hydrate-forming keto carbonyl compounds. Chem Ber 103:3871–3884CrossRef
50.
Zurück zum Zitat Dei T, Morino K, Sudo A, Endo T (2011) Construction of reversible hydration-dehydration system by a model compound and a novel polymer bearing vicinal tricarbonyl structure. J Polym Sci Part A Polym Chem 49:2245–2251CrossRef Dei T, Morino K, Sudo A, Endo T (2011) Construction of reversible hydration-dehydration system by a model compound and a novel polymer bearing vicinal tricarbonyl structure. J Polym Sci Part A Polym Chem 49:2245–2251CrossRef
51.
Zurück zum Zitat Dei T, Morino K, Sudo A, Endo T (2012) Synthesis and reversible hydration-dehydration system of copolymers bearing a vicinal tricarbonyl structure J Polym Sci Part A Polym Chem 50:2619–2625 Dei T, Morino K, Sudo A, Endo T (2012) Synthesis and reversible hydration-dehydration system of copolymers bearing a vicinal tricarbonyl structure J Polym Sci Part A Polym Chem 50:2619–2625
52.
Zurück zum Zitat Morino K, Sudo A, Endo T (2012) Reversible Fixation and Release of Alcohols by a Polymer Bearing Vicinal Tricarbonyl Moieties and Its Application to Synthesis and Reversible Cross-Linking-De-Cross-Linking System of a Networked Polymer. Macromolecules 45:4494–4499CrossRef Morino K, Sudo A, Endo T (2012) Reversible Fixation and Release of Alcohols by a Polymer Bearing Vicinal Tricarbonyl Moieties and Its Application to Synthesis and Reversible Cross-Linking-De-Cross-Linking System of a Networked Polymer. Macromolecules 45:4494–4499CrossRef
53.
Zurück zum Zitat Yonekawa M, Furusho Y, Endo T (2012) Reversible Cross-linking and De-Cross-Linking System of Polystyrenes Bearing the Monohydrate Structure of Vicinal Tricarbonyl Group through Water-Alcohol Exchange Reactions at Ambient Conditions. Macromolecules 45:6640–6647CrossRef Yonekawa M, Furusho Y, Endo T (2012) Reversible Cross-linking and De-Cross-Linking System of Polystyrenes Bearing the Monohydrate Structure of Vicinal Tricarbonyl Group through Water-Alcohol Exchange Reactions at Ambient Conditions. Macromolecules 45:6640–6647CrossRef
54.
Zurück zum Zitat Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T (2013) Synthesis and X-ray structural analysis of an acyclic bifunctional vicinal triketone, its hydrate, and its ethanol-adduct. Tetrahedron 69:4076–4080CrossRef Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T (2013) Synthesis and X-ray structural analysis of an acyclic bifunctional vicinal triketone, its hydrate, and its ethanol-adduct. Tetrahedron 69:4076–4080CrossRef
55.
Zurück zum Zitat Yonekawa M, Furusho Y, Takata T, Endo T (2014) Reversible Crosslinking and Decrosslinking of Polymers Containing Alcohol Moiety Using an Acyclic Bifunctional Vicinal Triketone. J Polym Sci Part A Polym Chem 52:921–928CrossRef Yonekawa M, Furusho Y, Takata T, Endo T (2014) Reversible Crosslinking and Decrosslinking of Polymers Containing Alcohol Moiety Using an Acyclic Bifunctional Vicinal Triketone. J Polym Sci Part A Polym Chem 52:921–928CrossRef
Metadaten
Titel
Construction of reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl structure and poly(ethylene glycol)
verfasst von
Tatsuya Yuki
Morio Yonekawa
Kozo Matsumoto
Ikuyoshi Tomita
Takeshi Endo
Publikationsdatum
25.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1490-5

Weitere Artikel der Ausgabe 2/2016

Polymer Bulletin 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.