Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2023

27.04.2022 | Research Article

Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI

verfasst von: Zhengzhe Cui, Juan Lin, Xiangxiang Fu, Shiwei Zhang, Peng Li, Xixi Wu, Xue Wang, Weidong Chen, Shiqiang Zhu, Yongqiang Li

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Patients with complete spinal cord injury have a complete loss of motor and sensory functions below the injury plane, leading to a complete loss of function of the nerve pathway in the injured area. Improving the microenvironment in the injured area of patients with spinal cord injury, promoting axon regeneration of the nerve cells is challenging research fields. The brain-computer interface rehabilitation system is different from the other rehabilitation techniques. It can exert bidirectional stimulation on the spinal cord injury area, and can make positively rehabilitation effects of the patient with complete spinal cord injury. A dynamic model was constructed for the patient with spinal cord injury under-stimulation therapy, and the mechanism of the brain-computer interface in rehabilitation training was explored. The effects of the three current rehabilitation treatment methods on the microenvironment in a microscopic nonlinear model were innovatively unified and a complex system mapping relationship from the microscopic axon growth to macroscopic motor functions was constructed. The basic structure of the model was determined by simulating and fitting the data of the open rat experiments. A clinical rehabilitation experiment of spinal cord injury based on brain-computer interface was built, recruiting a patient with complete spinal cord injury, and the rehabilitation training and follow-up were conducted. The changes in the motor function of the patient was simulated and predicted through the constructed model, and the trend in the motor function improvement was successfully predicted over time. This proposed model explores the mechanism of brain-computer interface in rehabilitating patients with complete spinal cord injury, and it is also an application of complex system theory in rehabilitation medicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aravind N, Harvey LA, Glinsky JV (2019) Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 57:449–460CrossRef Aravind N, Harvey LA, Glinsky JV (2019) Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 57:449–460CrossRef
Zurück zum Zitat Awad BI, Carmody MA, Zhang X, Lin VW, Steinmetz MP (2015) Transcranial magnetic stimulation after spinal cord injury. World Neurosurg 83:232–235CrossRef Awad BI, Carmody MA, Zhang X, Lin VW, Steinmetz MP (2015) Transcranial magnetic stimulation after spinal cord injury. World Neurosurg 83:232–235CrossRef
Zurück zum Zitat Barnabe-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24CrossRef Barnabe-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3(1):16–24CrossRef
Zurück zum Zitat Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, Leon N, Gomez B, Samuelsson K, Antepohl W, Holmstrom U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sorensen F (2018) Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med 50:806–813CrossRef Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, Leon N, Gomez B, Samuelsson K, Antepohl W, Holmstrom U, Marklund N, Glott T, Opheim A, Penalva JB, Murillo N, Nachtegaal J, Faber W, Biering-Sorensen F (2018) Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med 50:806–813CrossRef
Zurück zum Zitat Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Kho Da Iry A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M (2018) Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9:2421CrossRef Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Kho Da Iry A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M (2018) Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9:2421CrossRef
Zurück zum Zitat Blits B, Oudega M, Boer GJ, Bunge MB, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271–281CrossRef Blits B, Oudega M, Boer GJ, Bunge MB, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271–281CrossRef
Zurück zum Zitat Calvert JS, Grahn PJ, Zhao KD, Lee KH (2019) Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation 22:244–252CrossRef Calvert JS, Grahn PJ, Zhao KD, Lee KH (2019) Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation 22:244–252CrossRef
Zurück zum Zitat Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2007) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74CrossRef Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2007) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74CrossRef
Zurück zum Zitat Ditunno JF, Young W, Donovan WH, Creasey G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. Spinal Cord 32:70–80CrossRef Ditunno JF, Young W, Donovan WH, Creasey G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. Spinal Cord 32:70–80CrossRef
Zurück zum Zitat Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MA (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383CrossRef Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MA (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383CrossRef
Zurück zum Zitat Fehlings MG, Weidner N (2016) Spinal cord injury and regeneration. In: Vialle LR (ed) AOSpine masters series. Thieme, Stuttgart Fehlings MG, Weidner N (2016) Spinal cord injury and regeneration. In: Vialle LR (ed) AOSpine masters series. Thieme, Stuttgart
Zurück zum Zitat Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15:554–577CrossRef Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15:554–577CrossRef
Zurück zum Zitat Grant B (2007) The powers that be. The Scientist, 21(3) Grant B (2007) The powers that be. The Scientist, 21(3)
Zurück zum Zitat Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269CrossRef Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269CrossRef
Zurück zum Zitat Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088–1106CrossRef Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088–1106CrossRef
Zurück zum Zitat Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306CrossRef Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306CrossRef
Zurück zum Zitat Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:547–554CrossRef Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:547–554CrossRef
Zurück zum Zitat Litvak V, Zeller D, Oostenveld R, Maris E, Cohen A, Schramm A, Gentner R, Zaaroor M, Pratt H, Classen J (2007) LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour. Eur J Neurosci 25:2862–2874CrossRef Litvak V, Zeller D, Oostenveld R, Maris E, Cohen A, Schramm A, Gentner R, Zaaroor M, Pratt H, Classen J (2007) LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour. Eur J Neurosci 25:2862–2874CrossRef
Zurück zum Zitat Lu Q (2015) Coupling relationship between the central pattern generator and the cerebral cortex with time delay. Cogn Neurodyn 9:423–436CrossRef Lu Q (2015) Coupling relationship between the central pattern generator and the cerebral cortex with time delay. Cogn Neurodyn 9:423–436CrossRef
Zurück zum Zitat Lu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn 8:217–226CrossRef Lu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn 8:217–226CrossRef
Zurück zum Zitat Marino RJ, Burns S, Graves DE, Leiby BE, Kirshblum S, Lammertse DP (2011) Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: an update from the national spinal cord injury database. Arch Phys Med Rehabil 92:369–375CrossRef Marino RJ, Burns S, Graves DE, Leiby BE, Kirshblum S, Lammertse DP (2011) Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: an update from the national spinal cord injury database. Arch Phys Med Rehabil 92:369–375CrossRef
Zurück zum Zitat Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 10:192–238CrossRef Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 10:192–238CrossRef
Zurück zum Zitat Mitchell M (2011) Complexity: a guided tour. Oxford University Press, USA Mitchell M (2011) Complexity: a guided tour. Oxford University Press, USA
Zurück zum Zitat Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22CrossRef Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22CrossRef
Zurück zum Zitat Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556–1566CrossRef Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556–1566CrossRef
Zurück zum Zitat Petrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VL (2013) Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci 33:4032–4043CrossRef Petrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VL (2013) Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci 33:4032–4043CrossRef
Zurück zum Zitat Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL (2015) Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 114:2923–2940CrossRef Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL (2015) Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 114:2923–2940CrossRef
Zurück zum Zitat Ry C (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London Ry C (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London
Zurück zum Zitat Shokur S, Donati ARC, Campos DSF, Gitti C, Bao G, Fischer D, Almeida S, Braga VAS, Augusto P, Petty C, Alho EJL, Lebedev M, Song AW, Nicolelis MAL (2018) Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLoS ONE 13:e0206464CrossRef Shokur S, Donati ARC, Campos DSF, Gitti C, Bao G, Fischer D, Almeida S, Braga VAS, Augusto P, Petty C, Alho EJL, Lebedev M, Song AW, Nicolelis MAL (2018) Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLoS ONE 13:e0206464CrossRef
Zurück zum Zitat Venugopal S, Hamm TM, Jung R (2012) Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 6:283–293CrossRef Venugopal S, Hamm TM, Jung R (2012) Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 6:283–293CrossRef
Zurück zum Zitat West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592CrossRef West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592CrossRef
Zurück zum Zitat Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680CrossRef Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680CrossRef
Zurück zum Zitat Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V (2006) Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil 87:1218–1222CrossRef Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V (2006) Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil 87:1218–1222CrossRef
Zurück zum Zitat Xie J, Jiang L, Li Y, Chen B, Li F, Jiang Y, Gao D, Deng L, Lv X, Ma X (2021) Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 15:939–948CrossRef Xie J, Jiang L, Li Y, Chen B, Li F, Jiang Y, Gao D, Deng L, Lv X, Ma X (2021) Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 15:939–948CrossRef
Zurück zum Zitat Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M (2016) The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 234:1469–1478CrossRef Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M (2016) The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 234:1469–1478CrossRef
Zurück zum Zitat Yoon EJ, Kim YK, Kim HR, Kim SE, Lee Y, Shin HI (2014) Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study. Neurorehabil Neural Repair 28:250–259CrossRef Yoon EJ, Kim YK, Kim HR, Kim SE, Lee Y, Shin HI (2014) Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study. Neurorehabil Neural Repair 28:250–259CrossRef
Metadaten
Titel
Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI
verfasst von
Zhengzhe Cui
Juan Lin
Xiangxiang Fu
Shiwei Zhang
Peng Li
Xixi Wu
Xue Wang
Weidong Chen
Shiqiang Zhu
Yongqiang Li
Publikationsdatum
27.04.2022
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2023
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09804-3

Weitere Artikel der Ausgabe 1/2023

Cognitive Neurodynamics 1/2023 Zur Ausgabe

Neuer Inhalt