Skip to main content
Erschienen in: Journal of Materials Science 4/2017

07.11.2016 | Original Paper

Construction of weighted crystallographic orientations capturing a given orientation density function

verfasst von: Helmut Schaeben, Florian Bachmann, Jean-Jacques Fundenberger

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about \(99.75\,\%\) to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than \(10\,\%\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hielscher R (2013) Kernel density estimation on the rotation group and its application to crystallographic texture analysis. J Multivariate Anal 119:119–143CrossRef Hielscher R (2013) Kernel density estimation on the rotation group and its application to crystallographic texture analysis. J Multivariate Anal 119:119–143CrossRef
2.
Zurück zum Zitat Tikhovskiy I, Raabe D, Roters F (2007) Simulation of earing during deep drawing of an Al-3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM. J Mater Process Technol 183:169–175CrossRef Tikhovskiy I, Raabe D, Roters F (2007) Simulation of earing during deep drawing of an Al-3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM. J Mater Process Technol 183:169–175CrossRef
3.
Zurück zum Zitat Knezevic M, Landry NW (2015) Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics. Mech Mater 88:73–86CrossRef Knezevic M, Landry NW (2015) Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics. Mech Mater 88:73–86CrossRef
4.
Zurück zum Zitat Eisenlohr P, Roters F (2008) Selecting sets of discrete orientations for accurate texture reconstruction. Comp Mater Sci 42:670–678CrossRef Eisenlohr P, Roters F (2008) Selecting sets of discrete orientations for accurate texture reconstruction. Comp Mater Sci 42:670–678CrossRef
5.
Zurück zum Zitat Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London
6.
Zurück zum Zitat Bozzolo N, Gerspach F, Sawina G, Wagner F (2007) Accuracy of orientation distribution function determination based on EBSD data: a case study of a recrystallized low alloyed Zr sheet. J Microsc 227:275–283CrossRef Bozzolo N, Gerspach F, Sawina G, Wagner F (2007) Accuracy of orientation distribution function determination based on EBSD data: a case study of a recrystallized low alloyed Zr sheet. J Microsc 227:275–283CrossRef
7.
Zurück zum Zitat Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX -free and open source software toolbox. Solid State Phenom 160:63–68CrossRef Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX -free and open source software toolbox. Solid State Phenom 160:63–68CrossRef
8.
Zurück zum Zitat Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall/CRC, LondonCrossRef Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall/CRC, LondonCrossRef
9.
Zurück zum Zitat Scott DW (2015) Multivariate density estimation: theory, practice, and visualization, 2nd edn. Wiley, New York Scott DW (2015) Multivariate density estimation: theory, practice, and visualization, 2nd edn. Wiley, New York
10.
Zurück zum Zitat Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall/CRC, LondonCrossRef Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall/CRC, LondonCrossRef
11.
Zurück zum Zitat Alexandre BT (2009) Introduction to nonparametric estimation. Springer, New York Alexandre BT (2009) Introduction to nonparametric estimation. Springer, New York
12.
Zurück zum Zitat Tsybakov A (2009) Introduction to nonparametric estimation. Springer, BerlinCrossRef Tsybakov A (2009) Introduction to nonparametric estimation. Springer, BerlinCrossRef
13.
Zurück zum Zitat Hall P, Watson GS, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74:751–762CrossRef Hall P, Watson GS, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74:751–762CrossRef
14.
Zurück zum Zitat Schaeben H (1993) Towards statistics of crystal orientations in quantitative texture analysis. J Appl Cryst 26:112–121CrossRef Schaeben H (1993) Towards statistics of crystal orientations in quantitative texture analysis. J Appl Cryst 26:112–121CrossRef
15.
Zurück zum Zitat Pelletier B (2005) Kernel density estimation on Riemannian manifolds. Statist Probab Lett 73:297–304CrossRef Pelletier B (2005) Kernel density estimation on Riemannian manifolds. Statist Probab Lett 73:297–304CrossRef
16.
Zurück zum Zitat Rudin W (1991) Functional analysis, 2nd edn. McGrawHill, New York Rudin W (1991) Functional analysis, 2nd edn. McGrawHill, New York
17.
Zurück zum Zitat Watson GS (1969) Density estimation by orthogonal series. Ann Math Statist 40:1496–1498CrossRef Watson GS (1969) Density estimation by orthogonal series. Ann Math Statist 40:1496–1498CrossRef
18.
Zurück zum Zitat Hendriks H (1990) Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansion. Ann Statist 18:832–849CrossRef Hendriks H (1990) Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansion. Ann Statist 18:832–849CrossRef
19.
Zurück zum Zitat Berens H, Butzer PL, Pawelke S (1968) Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ RIMS, Kyoto Univ Ser A 4:201–268CrossRef Berens H, Butzer PL, Pawelke S (1968) Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ RIMS, Kyoto Univ Ser A 4:201–268CrossRef
20.
Zurück zum Zitat Pawelke S (1972) Über die Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen. Tohoku Math Journ 24:473–486CrossRef Pawelke S (1972) Über die Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen. Tohoku Math Journ 24:473–486CrossRef
21.
Zurück zum Zitat Butzer PL, Stens RL, Wehrens H (1979) Approximation by algebraic convolution integrals. In: Prolla JB (ed) Approximation theory and functional analysis. North Holland Publishing Comp, Amsterdam, pp 120–171 Butzer PL, Stens RL, Wehrens H (1979) Approximation by algebraic convolution integrals. In: Prolla JB (ed) Approximation theory and functional analysis. North Holland Publishing Comp, Amsterdam, pp 120–171
22.
Zurück zum Zitat Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Clarendon Press, Oxford Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Clarendon Press, Oxford
23.
Zurück zum Zitat Butzer PL, Nessel RJ (1971) Fourier analysis and approximaation. Birkhäuser, BaselCrossRef Butzer PL, Nessel RJ (1971) Fourier analysis and approximaation. Birkhäuser, BaselCrossRef
24.
Zurück zum Zitat Schaeben H (1997) A simple standard orientation density function: the hyperspherical de la Vallée Poussin kernel. Phys Stat Sol (B) 200:367–376CrossRef Schaeben H (1997) A simple standard orientation density function: the hyperspherical de la Vallée Poussin kernel. Phys Stat Sol (B) 200:367–376CrossRef
25.
Zurück zum Zitat Schaeben H (1999) The de la Vallée Poussin standard orientation density function. Textures Microstruct 33:365–373CrossRef Schaeben H (1999) The de la Vallée Poussin standard orientation density function. Textures Microstruct 33:365–373CrossRef
26.
Zurück zum Zitat León CA, Massé J-C, Rivest L-P (2006) A statistical model for random rotations. J Multivariate Anal 97:412–430CrossRef León CA, Massé J-C, Rivest L-P (2006) A statistical model for random rotations. J Multivariate Anal 97:412–430CrossRef
27.
Zurück zum Zitat Fengler MJ, Freeden W, Gutting M (2005) The spherical Bernstein wavelet. Schriften zur funktionalanalysis und geomathematik 20. TU Kaiserslautern, Kaiserslautern Fengler MJ, Freeden W, Gutting M (2005) The spherical Bernstein wavelet. Schriften zur funktionalanalysis und geomathematik 20. TU Kaiserslautern, Kaiserslautern
28.
Zurück zum Zitat Rudin W (1964) Principles of mathematical analysis, 2nd edn. McGraw-Hill, New York Rudin W (1964) Principles of mathematical analysis, 2nd edn. McGraw-Hill, New York
29.
Zurück zum Zitat Marron JS (1988) Automatic smoothing parameter selection: a survey. Empir Econ 13:187–208CrossRef Marron JS (1988) Automatic smoothing parameter selection: a survey. Empir Econ 13:187–208CrossRef
30.
31.
Zurück zum Zitat Habbema JDF, Hennans J, Van den Broek K (1974) A stepwise discrimination analysis program using density estimation. In: Bruckmann G (ed) COMPSTAT 1974, Proceedings in computational staristics. Physica-Verlag, Vienna, pp 101–110 Habbema JDF, Hennans J, Van den Broek K (1974) A stepwise discrimination analysis program using density estimation. In: Bruckmann G (ed) COMPSTAT 1974, Proceedings in computational staristics. Physica-Verlag, Vienna, pp 101–110
32.
Zurück zum Zitat Duin RPW (1976) On the choice of smoothing parameters of Parzen estimators of probability density functions. IEEE Trans Comput 25:1175–1179CrossRef Duin RPW (1976) On the choice of smoothing parameters of Parzen estimators of probability density functions. IEEE Trans Comput 25:1175–1179CrossRef
33.
Zurück zum Zitat Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360CrossRef Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360CrossRef
34.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge
35.
Zurück zum Zitat Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi SR, Garmestani H (2001) Microstructure-sensitive design of a compliant beam. J Mech Phys Solids 49:1639–1663CrossRef Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi SR, Garmestani H (2001) Microstructure-sensitive design of a compliant beam. J Mech Phys Solids 49:1639–1663CrossRef
36.
Zurück zum Zitat Bachmann F, Schaeben H (2015) Diminution of the sample size of individual orientation measurements approximately preserving the orientation density function. In: Schaeben H, Tolosana Delgado R, van den Boogaart KG, van den Boogaart R (eds) Proceedings of the 17 annual conference of the international association for mathematical geosciences, Freiberg, Germany, 7–10, Sept 2015, DVD ISBN 978-3-00-050337-5 Bachmann F, Schaeben H (2015) Diminution of the sample size of individual orientation measurements approximately preserving the orientation density function. In: Schaeben H, Tolosana Delgado R, van den Boogaart KG, van den Boogaart R (eds) Proceedings of the 17 annual conference of the international association for mathematical geosciences, Freiberg, Germany, 7–10, Sept 2015, DVD ISBN 978-3-00-050337-5
37.
Zurück zum Zitat Bachmann F, Fundenberger J-J, Schaeben H (2016) Weighted individual crystallographic orientations capturing a given orientation density function, THERMEC 2016, Graz, Austria, May 29–June 3, 2016 Bachmann F, Fundenberger J-J, Schaeben H (2016) Weighted individual crystallographic orientations capturing a given orientation density function, THERMEC 2016, Graz, Austria, May 29–June 3, 2016
Metadaten
Titel
Construction of weighted crystallographic orientations capturing a given orientation density function
verfasst von
Helmut Schaeben
Florian Bachmann
Jean-Jacques Fundenberger
Publikationsdatum
07.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0496-1

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.