Skip to main content
Erschienen in: Measurement Techniques 9/2020

11.01.2021

Contactless Pneumoelectric Fluid Viscosity Measurement Device

verfasst von: A. P. Savenkov, M. M. Mordasov, V. A. Sychev

Erschienen in: Measurement Techniques | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review a variety of contactless techniques for fluid viscosity measurement. We discuss contactless aero-hydrodynamic techniques capable of providing high-accuracy viscosity measurements for non-homogeneous and non-transparent fluids over the range 2–100 Pa·s. We describe a very promising approach in need of additional work–a contactless aero-hydrodynamic technique that involves using a pulsed gas jet to distort the surface of the fluid being measured and determining the viscosity based on the time required to reach a specified deformation level after the gas jet comes on. We have developed a contactless aero-hydrodynamic device with a laser triangulation detector to measure the range to the surface of the liquid; this viscosity measurement device supports full automation, while providing a significant increase in measurement accuracy. We studied four possible options for implementation of the device, and selected the best option to improve the measurement accuracy and reduce the sensitivity of the device to external effects. We describe the design and operating principle for the device, and describe how device design parameters affect systematic and random measurement error. The relative measurement error in fluid viscosity was 2% or less over the entire range from 2 to 100 Pa·s. This contactless aero-hydrodynamic device will be useful for measurement of viscous fluids in a wide variety of industrial fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. M. Mordasov and A. P. Savenkov, “Contactless techniques for fluid viscosity measurement (review),” Zavod. Lab. Diagn. Mater., 79, 27–35 (2013). M. M. Mordasov and A. P. Savenkov, “Contactless techniques for fluid viscosity measurement (review),” Zavod. Lab. Diagn. Mater., 79, 27–35 (2013).
4.
Zurück zum Zitat В. M. Pierce and D. B. Chang, US Patent 5005401, subm. April 9, 1991. В. M. Pierce and D. B. Chang, US Patent 5005401, subm. April 9, 1991.
5.
Zurück zum Zitat Y. Nishimura, A. Hasegawa, and Y. Nagasaka, “High-precision instrument for measuring the surface tension, viscosity and surface viscoelasticity of liquids using ripplon surface laser-light scattering with tunable wavelength selection,” Rev. Sci. Instrum., 85, No. 4, 044904 (2014), https://doi.org/10.1063/1.4871992. Y. Nishimura, A. Hasegawa, and Y. Nagasaka, “High-precision instrument for measuring the surface tension, viscosity and surface viscoelasticity of liquids using ripplon surface laser-light scattering with tunable wavelength selection,” Rev. Sci. Instrum., 85, No. 4, 044904 (2014), https://​doi.​org/​10.​1063/​1.​4871992.
8.
Zurück zum Zitat L. H. Li, L. Hu, S. J. Yang, et al., “Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations,” J. Appl. Phys., 119, 035902 (2016), https://doi.org/10.1063/1.4940243. L. H. Li, L. Hu, S. J. Yang, et al., “Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations,” J. Appl. Phys., 119, 035902 (2016), https://​doi.​org/​10.​1063/​1.​4940243.
11.
Zurück zum Zitat J. Kremer, A. Kilzer, and M. Petermann, “Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets,” Rev.Sci. Instrum., 89, 015109 (2018), https://doi.org/10.1063/1.4998796. J. Kremer, A. Kilzer, and M. Petermann, “Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets,” Rev.Sci. Instrum., 89, 015109 (2018), https://​doi.​org/​10.​1063/​1.​4998796.
14.
Zurück zum Zitat M. M. Mordasov, A. P. Savenkov, and K. E. Chechetov, “Use of the term ‘contactless measurement technique’,“ Datch. Sistemy, No. 4, 47–52 (2017). M. M. Mordasov, A. P. Savenkov, and K. E. Chechetov, “Use of the term ‘contactless measurement technique’,“ Datch. Sistemy, No. 4, 47–52 (2017).
16.
Zurück zum Zitat B. A. Bezuglyi, O. A. Tarasov, and S. I. Chemodanov, Patent No. 2305271 RF, Izobret. Polezn. Modeli, No. 24 (2007). B. A. Bezuglyi, O. A. Tarasov, and S. I. Chemodanov, Patent No. 2305271 RF, Izobret. Polezn. Modeli, No. 24 (2007).
18.
Zurück zum Zitat S. Nowinski, GB Patent 2192987, subm. Jan. 27, 1988. S. Nowinski, GB Patent 2192987, subm. Jan. 27, 1988.
19.
Zurück zum Zitat P. G. Backes, US Patent 5024080, subm. June 18, 1991. P. G. Backes, US Patent 5024080, subm. June 18, 1991.
20.
Zurück zum Zitat M. M. Mordasov and A. P. Savenkov, “Pneumatic contactless measurement of fluid viscosity,” Zavod. Lab. Diagn. Mater., 75, No. 2, 33–37 (2009). M. M. Mordasov and A. P. Savenkov, “Pneumatic contactless measurement of fluid viscosity,” Zavod. Lab. Diagn. Mater., 75, No. 2, 33–37 (2009).
21.
Zurück zum Zitat D. M. Mordasov, M. M. Mordasov, and A. P. Savenkov, Aero-Hydrodynamic Effects in Contactless Jet Techniques for Nondestructive Fluid Viscosity Measurement, Fizmatlit, Moscow (2012). D. M. Mordasov, M. M. Mordasov, and A. P. Savenkov, Aero-Hydrodynamic Effects in Contactless Jet Techniques for Nondestructive Fluid Viscosity Measurement, Fizmatlit, Moscow (2012).
23.
Zurück zum Zitat M. M. Mordasov, A. P. Savenkov, V. A. Sychev, and G. V. Mozgova, “Laser triangulation rangefinder for specular surfaces,” Datch. Sistemy, No. 3, 49–53 (2018). M. M. Mordasov, A. P. Savenkov, V. A. Sychev, and G. V. Mozgova, “Laser triangulation rangefinder for specular surfaces,” Datch. Sistemy, No. 3, 49–53 (2018).
Metadaten
Titel
Contactless Pneumoelectric Fluid Viscosity Measurement Device
verfasst von
A. P. Savenkov
M. M. Mordasov
V. A. Sychev
Publikationsdatum
11.01.2021
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 9/2020
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-021-01845-0

Weitere Artikel der Ausgabe 9/2020

Measurement Techniques 9/2020 Zur Ausgabe