Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.02.2020 | Research Article-Computer Engineering and Computer Science | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

Content-Based Image Retrieval Using Color, Shape and Texture Descriptors and Features

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autor:
Mutasem K. Alsmadi

Abstract

Due to the recent technology development, the multimedia complexity is noticeably increased and new research areas are opened relying on similar multimedia content retrieval. Content-based image retrieval (CBIR) systems are used for the retrieval of images related to the Query Image (QI) from huge databases. The CBIR systems available today have confined efficiency as they extract only limited feature sets. This paper demonstrates the extraction of vast robust and important features from the images database and the storage of these features in the repository in the form of feature vectors. The feature repository contains color signature, the shape features and texture features. Here, features are extracted from specific QI. Accordingly, an innovative similarity evaluation with a metaheuristic algorithm (genetic algorithm with simulating annealing) has been attained between the QI features and those belonging to the database images. For an image entered as QI from a database, the distance metrics are used to search the related images, which is the main idea of CBIR. The proposed CBIR techniques are described and constructed based on RGB color with neutrosophic clustering algorithm and Canny edge method to extract shape features, YCbCr color with discrete wavelet transform and Canny edge histogram to extract color features, and gray-level co-occurrence matrix to extract texture features. The combination of these methods increases the image retrieval framework performance for content-based retrieval. Furthermore, the results’ precision–recall value is calculated to evaluate the system’s efficiency. The CBIR system proposed demonstrates better precision and recall values compared to other state-of-the-art CBIR systems.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

An Enhanced Eye-Tracking Approach Using Pipeline Computation

Research Article - Computer Engineering and Computer Science

Topic-Based Image Caption Generation

Research Article - Computer Engineering and Computer Science

EX-MAN Component Model for Component-Based Software Construction

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise