Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2014 | Regular Paper | Ausgabe 2/2014

International Journal of Multimedia Information Retrieval 2/2014

Context-assisted face clustering framework with human-in-the-loop

Zeitschrift:
International Journal of Multimedia Information Retrieval > Ausgabe 2/2014
Autoren:
Liyan Zhang, Dmitri V. Kalashnikov, Sharad Mehrotra
Wichtige Hinweise
This work was supported in part by NSF grants CNS-1118114, CNS-1059436, CNS-1063596. It is part of NSF supported project Sherlock @ UCI (http://​sherlock.​ics.​uci.​edu): a UC Irvine project on Data Quality and Entity Resolution [16].

Abstract

Automatic face clustering, which aims to group faces referring to the same people together, is a key component for face tagging and image management. Standard face clustering approaches that are based on analyzing facial features can already achieve high-precision results. However, they often suffer from low recall due to the large variation of faces in pose, expression, illumination, occlusion, etc. To improve the clustering recall without reducing the high precision, we leverage the heterogeneous context information to iteratively merge the clusters referring to same entities. We first investigate the appropriate methods to utilize the context information at the cluster level, including using of “common scene”, people co-occurrence, human attributes, and clothing. We then propose a unified framework that employs bootstrapping to automatically learn adaptive rules to integrate this heterogeneous contextual information, along with facial features, together. Finally, we discuss a novel methodology for integrating human-in-the-loop feedback mechanisms that leverage human interaction to achieve the high-quality clustering results. Experimental results on two personal photo collections and one real-world surveillance dataset demonstrate the effectiveness of the proposed approach in improving recall while maintaining very high precision of face clustering.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2014

International Journal of Multimedia Information Retrieval 2/2014 Zur Ausgabe

Premium Partner

    Bildnachweise