Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2017 | Technical Article | Ausgabe 2/2017 Open Access

Integrating Materials and Manufacturing Innovation 2/2017

Context Aware Machine Learning Approaches for Modeling Elastic Localization in Three-Dimensional Composite Microstructures

Integrating Materials and Manufacturing Innovation > Ausgabe 2/2017
Ruoqian Liu, Yuksel C. Yabansu, Zijiang Yang, Alok N. Choudhary, Surya R. Kalidindi, Ankit Agrawal


The response of a composite material is the result of a complex interplay between the prevailing mechanics and the heterogenous structure at disparate spatial and temporal scales. Understanding and capturing the multiscale phenomena is critical for materials modeling and can be pursued both by physical simulation-based modeling as well as data-driven machine learning-based modeling. In this work, we build machine learning-based data models as surrogate models for approximating the microscale elastic response as a function of the material microstructure (also called the elastic localization linkage). In building these surrogate models, we particularly focus on understanding the role of contexts, as a link to the higher scale information that most evidently influences and determines the microscale response. As a result of context modeling, we find that machine learning systems with context awareness not only outperform previous best results, but also extend the parallelism of model training so as to maximize the computational efficiency.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Über diesen Artikel

Weitere Artikel der Ausgabe 2/2017

Integrating Materials and Manufacturing Innovation 2/2017 Zur Ausgabe

Premium Partner


    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.