Skip to main content
Erschienen in: Numerical Algorithms 4/2021

10.07.2020 | Original Paper

Continuous and discrete zeroing dynamics models using JMP function array and design formula for solving time-varying Sylvester-transpose matrix inequality

verfasst von: Yunong Zhang, Xiao Liu, Yihong Ling, Min Yang, Huanchang Huang

Erschienen in: Numerical Algorithms | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zeroing dynamics (ZD) has shown great performance to solve various time-varying problems. In this paper, the problem of time-varying Sylvester-transpose matrix inequality is first investigated. Since it is difficult to solve a matrix inequality with a matrix variable and its transpose by traditional methods, this paper proposes a continuous ZD (CZD) model by employing ZD design formula and JMP function array to solve this challenging problem. Furthermore, for better implementation on digital computers, three discrete ZD (DZD) models are proposed by using three different discretization formulas with different precision, i.e., the Euler-forward formula, the 6-instant Zhang et al discretization (ZeaD) formula and the 7-instant ZeaD formula. What is more, theoretical truncation error analyses and numerical experiments substantiate the convergence, efficacy and superiority of the DZD models for solving time-varying Sylvester-transpose matrix inequality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chesi, G.: LMI techniques for optimization over polynomials in control: a survey. IEEE Trans. Autom. Control 55(11), 2500–2510 (2010)MathSciNetMATH Chesi, G.: LMI techniques for optimization over polynomials in control: a survey. IEEE Trans. Autom. Control 55(11), 2500–2510 (2010)MathSciNetMATH
2.
Zurück zum Zitat Jing, X.: Robust adaptive learning of feedforward neural networks via LMI optimizations. Neural Netw. 31, 33–45 (2012)MATH Jing, X.: Robust adaptive learning of feedforward neural networks via LMI optimizations. Neural Netw. 31, 33–45 (2012)MATH
3.
Zurück zum Zitat Lakshmanan, S., Lim, C.P., Prakash, M., Nahavandi, S., Balasubramaniam, P.: Neutral-type of delayed inertial neural networks and their stability analysis using the LMI approach. Neurocomputing 230, 243–250 (2017) Lakshmanan, S., Lim, C.P., Prakash, M., Nahavandi, S., Balasubramaniam, P.: Neutral-type of delayed inertial neural networks and their stability analysis using the LMI approach. Neurocomputing 230, 243–250 (2017)
4.
Zurück zum Zitat Wang, Z., Zhang, H., Jiang, B.: LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans. Neural Netw. 22(7), 1032–1045 (2011) Wang, Z., Zhang, H., Jiang, B.: LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans. Neural Netw. 22(7), 1032–1045 (2011)
5.
Zurück zum Zitat Zhang, Y.: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 70(1–3), 513–524 (2006) Zhang, Y.: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 70(1–3), 513–524 (2006)
6.
Zurück zum Zitat Li, J., Huang, N.: Image space analysis for vector variational inequalities with matrix inequality constraints and applications. J. Optim. Theory Appl. 145(3), 459–477 (2010)MathSciNetMATH Li, J., Huang, N.: Image space analysis for vector variational inequalities with matrix inequality constraints and applications. J. Optim. Theory Appl. 145(3), 459–477 (2010)MathSciNetMATH
7.
Zurück zum Zitat Guo, D., Zhang, Y.: Zhang neural network for online solution of time-varying linear matrix inequality aided with an equality conversion. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 370–382 (2014) Guo, D., Zhang, Y.: Zhang neural network for online solution of time-varying linear matrix inequality aided with an equality conversion. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 370–382 (2014)
8.
Zurück zum Zitat Lei, Y.: The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense. Numer. Algorithms 69(1), 227–251 (2015)MathSciNetMATH Lei, Y.: The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense. Numer. Algorithms 69(1), 227–251 (2015)MathSciNetMATH
9.
Zurück zum Zitat Dax, A.: A hybrid algorithm for solving linear inequalities in a least squares sense. Numer. Algorithms 50(2), 97–114 (2009)MathSciNetMATH Dax, A.: A hybrid algorithm for solving linear inequalities in a least squares sense. Numer. Algorithms 50(2), 97–114 (2009)MathSciNetMATH
10.
Zurück zum Zitat Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatron. 18(2), 674–686 (2013) Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatron. 18(2), 674–686 (2013)
11.
Zurück zum Zitat Guo, D., Zhang, Y.: A new inequality-based obstacle-avoidance MVN scheme and its application to redundant robot manipulators. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 42(6), 1326–1340 (2012) Guo, D., Zhang, Y.: A new inequality-based obstacle-avoidance MVN scheme and its application to redundant robot manipulators. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 42(6), 1326–1340 (2012)
12.
Zurück zum Zitat Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim. Theory Appl. 72(1), 163–185 (1992)MathSciNetMATH Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim. Theory Appl. 72(1), 163–185 (1992)MathSciNetMATH
13.
Zurück zum Zitat Cichocki, A., Bargiela, A.: Neural networks for solving linear inequality systems. Parallel Comput. 22(11), 1455–1475 (1997)MathSciNetMATH Cichocki, A., Bargiela, A.: Neural networks for solving linear inequality systems. Parallel Comput. 22(11), 1455–1475 (1997)MathSciNetMATH
14.
Zurück zum Zitat Lin, C., Lai, C., Huang, T.: A neural network for linear matrix inequality problems. IEEE Trans. Neural Netw. 11(5), 1078–1092 (2000) Lin, C., Lai, C., Huang, T.: A neural network for linear matrix inequality problems. IEEE Trans. Neural Netw. 11(5), 1078–1092 (2000)
15.
Zurück zum Zitat Cheng, L., Hou, Z., Tan, M.: A simplified neural network for linear matrix inequality problems. Neural Process. Lett. 29(3), 213–230 (2009) Cheng, L., Hou, Z., Tan, M.: A simplified neural network for linear matrix inequality problems. Neural Process. Lett. 29(3), 213–230 (2009)
16.
Zurück zum Zitat Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. Inst. 350(10), 3328–3341 (2013)MathSciNetMATH Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. Inst. 350(10), 3328–3341 (2013)MathSciNetMATH
17.
Zurück zum Zitat Hajarian, M.: Extending the GPBiCG algorithm for solving the generalized Sylvester-transpose matrix equation. Int. J. Control Autom. Syst. 12 (6), 1362–1365 (2014) Hajarian, M.: Extending the GPBiCG algorithm for solving the generalized Sylvester-transpose matrix equation. Int. J. Control Autom. Syst. 12 (6), 1362–1365 (2014)
18.
Zurück zum Zitat Li, S., He, J., Li, Y., Rafique, M.U.: Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNet Li, S., He, J., Li, Y., Rafique, M.U.: Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNet
19.
Zurück zum Zitat Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010) Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010)
20.
Zurück zum Zitat Liu, L., Shao, H., Nan, D.: Recurrent neural network model for computing largest and smallest generalized eigenvalue. Neurocomputing 71(16–18), 3589–3594 (2008) Liu, L., Shao, H., Nan, D.: Recurrent neural network model for computing largest and smallest generalized eigenvalue. Neurocomputing 71(16–18), 3589–3594 (2008)
21.
Zurück zum Zitat Zhang, Y., Ma, W., Li, X., Tan, H., Chen, K.: MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs. Neurocomputing 71(7–9), 1679–1687 (2009) Zhang, Y., Ma, W., Li, X., Tan, H., Chen, K.: MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs. Neurocomputing 71(7–9), 1679–1687 (2009)
22.
Zurück zum Zitat Zhao, H., Zhang, J.: Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network. Neurocomputing 72 (13–15), 3046–3054 (2009) Zhao, H., Zhang, J.: Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network. Neurocomputing 72 (13–15), 3046–3054 (2009)
23.
Zurück zum Zitat Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)MathSciNet Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)MathSciNet
24.
Zurück zum Zitat Chen, M.: Constrained control allocation for overactuated aircraft using a neurodynamic model. IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum. 46(12), 1630–1641 (2016) Chen, M.: Constrained control allocation for overactuated aircraft using a neurodynamic model. IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum. 46(12), 1630–1641 (2016)
25.
Zurück zum Zitat Jin, L., Zhang, Y.: Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer. Algorithms 73(1), 115–140 (2016)MathSciNetMATH Jin, L., Zhang, Y.: Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer. Algorithms 73(1), 115–140 (2016)MathSciNetMATH
26.
Zurück zum Zitat Guo, D., Lin, X., Su, Z., Sun, S., Huang, Z.: Design and analysis of two discrete-time ZD algorithms for time-varying nonlinear minimization. Numer. Algorithms 77(1), 23–36 (2018)MathSciNetMATH Guo, D., Lin, X., Su, Z., Sun, S., Huang, Z.: Design and analysis of two discrete-time ZD algorithms for time-varying nonlinear minimization. Numer. Algorithms 77(1), 23–36 (2018)MathSciNetMATH
27.
Zurück zum Zitat Zhang, Y., Li, Z., Guo, D., Ke, Z., Chen, P.: Discrete-time ZD, GD and NI for solving nonlinear timevarying equations. Numer. Algorithms 64(4), 721–740 (2013)MathSciNetMATH Zhang, Y., Li, Z., Guo, D., Ke, Z., Chen, P.: Discrete-time ZD, GD and NI for solving nonlinear timevarying equations. Numer. Algorithms 64(4), 721–740 (2013)MathSciNetMATH
28.
Zurück zum Zitat Zhang, Y., Ge, S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16 (6), 1477–1490 (2005) Zhang, Y., Ge, S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16 (6), 1477–1490 (2005)
29.
Zurück zum Zitat Zhang, Y., Jiang, D., Wang, J.: A recurrent neural network for solving Sylvester equation with timevarying coefficients. IEEE Trans. Neural Netw. 16 (5), 1053–1063 (2002) Zhang, Y., Jiang, D., Wang, J.: A recurrent neural network for solving Sylvester equation with timevarying coefficients. IEEE Trans. Neural Netw. 16 (5), 1053–1063 (2002)
30.
Zurück zum Zitat Zhang, Z., Zheng, L., Weng, J., Mao, Y., Lu, W., Xiao, L.: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation. IEEE Trans. Cybern. 48(11), 3135–3148 (2018) Zhang, Z., Zheng, L., Weng, J., Mao, Y., Lu, W., Xiao, L.: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation. IEEE Trans. Cybern. 48(11), 3135–3148 (2018)
31.
Zurück zum Zitat Xiao, L., Liao, B., Li, S., Zhang, Z., Ding, L., Jin, L.: Design and analysis of FTZNN applied to real-time solution of nonstationary Lyapunov equation and tracking control of wheeled mobile manipulator. IEEE Trans. Ind. Inform. 48(1), 98–105 (2018) Xiao, L., Liao, B., Li, S., Zhang, Z., Ding, L., Jin, L.: Design and analysis of FTZNN applied to real-time solution of nonstationary Lyapunov equation and tracking control of wheeled mobile manipulator. IEEE Trans. Ind. Inform. 48(1), 98–105 (2018)
32.
Zurück zum Zitat Xiao, L., Liao, B.: A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation. Neurocomputing 193, 213–218 (2016) Xiao, L., Liao, B.: A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation. Neurocomputing 193, 213–218 (2016)
33.
Zurück zum Zitat Li, X., Yu, J., Li, S., Ni, L.: A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 317, 70–78 (2018) Li, X., Yu, J., Li, S., Ni, L.: A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 317, 70–78 (2018)
34.
Zurück zum Zitat Zhang, Y.: Revisit the analog computer and gradient-based neural system for matrix inversion. In: Proceedings of IEEE International Symposium on Intelligent Control, pp. 1411–1416 (2005) Zhang, Y.: Revisit the analog computer and gradient-based neural system for matrix inversion. In: Proceedings of IEEE International Symposium on Intelligent Control, pp. 1411–1416 (2005)
35.
Zurück zum Zitat Miao, P., Shen, Y., Huang, Y., Wang, Y.: Solving time-varying quadratic programs based on finite-time Zhang neural networks and their application to robot tracking. Neural Comput. Appl. 26(3), 693–703 (2015) Miao, P., Shen, Y., Huang, Y., Wang, Y.: Solving time-varying quadratic programs based on finite-time Zhang neural networks and their application to robot tracking. Neural Comput. Appl. 26(3), 693–703 (2015)
36.
Zurück zum Zitat Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, 1983–1988 (2016) Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, 1983–1988 (2016)
37.
Zurück zum Zitat Xiao, L., Zhang, Y.: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. IEEE Trans. Neural Netw. 22 (10), 1676–1684 (2011) Xiao, L., Zhang, Y.: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. IEEE Trans. Neural Netw. 22 (10), 1676–1684 (2011)
38.
Zurück zum Zitat Hajarian, M.: Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. J. Frankl. Inst. 353 (5), 1168–1185 (2016)MathSciNetMATH Hajarian, M.: Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. J. Frankl. Inst. 353 (5), 1168–1185 (2016)MathSciNetMATH
39.
Zurück zum Zitat Hajarian, M.: Extending LSQR methods to solve the generalized Sylvester-transpose and periodic Sylvester matrix equations. Math. Meth. Appl. Sci. 37(13), 2017–2028 (2013)MathSciNetMATH Hajarian, M.: Extending LSQR methods to solve the generalized Sylvester-transpose and periodic Sylvester matrix equations. Math. Meth. Appl. Sci. 37(13), 2017–2028 (2013)MathSciNetMATH
40.
Zurück zum Zitat Hajarian, M.: Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations. Appl. Math. Model. 39(19), 6073–6084 (2015)MathSciNetMATH Hajarian, M.: Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations. Appl. Math. Model. 39(19), 6073–6084 (2015)MathSciNetMATH
41.
Zurück zum Zitat Xiao, L., Zhang, Y.: Different Zhang functions resulting in different ZNN models demonstrated via time-varying linear matrix-vector inequalities solving. Neurocomputing 121, 140–149 (2013) Xiao, L., Zhang, Y.: Different Zhang functions resulting in different ZNN models demonstrated via time-varying linear matrix-vector inequalities solving. Neurocomputing 121, 140–149 (2013)
42.
Zurück zum Zitat Zhang, Y., Yang, M., Huang, H., Xiao, M., Hu, H.: New discrete solution model for solving future different-level linear inequality and equality with robot manipulator control. IEEE Trans. Ind. Inform. 15(4), 1975–1984 (2019) Zhang, Y., Yang, M., Huang, H., Xiao, M., Hu, H.: New discrete solution model for solving future different-level linear inequality and equality with robot manipulator control. IEEE Trans. Ind. Inform. 15(4), 1975–1984 (2019)
43.
Zurück zum Zitat Jin, L., Li, S., Liao, B., Zhang, Z.: Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017) Jin, L., Li, S., Liao, B., Zhang, Z.: Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)
44.
Zurück zum Zitat Zhang, Y., Qi, Z., Li, J., Qiu, B., Yang, M.: Stepsize domain confirmation and optimum of ZeaD formula for future optimization. Numer. Algorithms 81(2), 561–574 (2019)MathSciNetMATH Zhang, Y., Qi, Z., Li, J., Qiu, B., Yang, M.: Stepsize domain confirmation and optimum of ZeaD formula for future optimization. Numer. Algorithms 81(2), 561–574 (2019)MathSciNetMATH
45.
Zurück zum Zitat Li, J., Mao, M., Uhlig, F., Zhang, Y.: A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals. Numer. Algorithms 81(2), 609–629 (2019)MathSciNetMATH Li, J., Mao, M., Uhlig, F., Zhang, Y.: A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals. Numer. Algorithms 81(2), 609–629 (2019)MathSciNetMATH
46.
Zurück zum Zitat Qiu, B., Zhang, Y., Guo, J., Yang, Z., Li, X.: New five-step DTZD algorithm for future nonlinear minimization with quartic steady-state error pattern. Numer. Algorithms 81(3), 1043–1065 (2019)MathSciNetMATH Qiu, B., Zhang, Y., Guo, J., Yang, Z., Li, X.: New five-step DTZD algorithm for future nonlinear minimization with quartic steady-state error pattern. Numer. Algorithms 81(3), 1043–1065 (2019)MathSciNetMATH
47.
Zurück zum Zitat Qiu, B., Zhang, Y.: Two new discrete-time neurodynamic algorithms applied to online future matrix inversion with nonsingular or sometimes-singular coefficient. IEEE Trans. Cybern. 49(6), 2032–2045 (2019) Qiu, B., Zhang, Y.: Two new discrete-time neurodynamic algorithms applied to online future matrix inversion with nonsingular or sometimes-singular coefficient. IEEE Trans. Cybern. 49(6), 2032–2045 (2019)
48.
Zurück zum Zitat Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. Inst.-Eng. Appl. Math. 350(10), 3328–3341 (2013)MathSciNetMATH Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. Inst.-Eng. Appl. Math. 350(10), 3328–3341 (2013)MathSciNetMATH
49.
Zurück zum Zitat Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova Science Publishers, New York (2011) Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova Science Publishers, New York (2011)
50.
Zurück zum Zitat Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012) Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
51.
Zurück zum Zitat Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATH Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATH
52.
Zurück zum Zitat Liao, B., Zhang, Y.: From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion. Neurocomputing 133, 512–522 (2014) Liao, B., Zhang, Y.: From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion. Neurocomputing 133, 512–522 (2014)
53.
Zurück zum Zitat Zhang, Y., Yang, Y., Tan, N., Cai, B.: Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse. Computing 92(2), 97–121 (2011)MathSciNetMATH Zhang, Y., Yang, Y., Tan, N., Cai, B.: Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse. Computing 92(2), 97–121 (2011)MathSciNetMATH
54.
Zurück zum Zitat Zhang, Y., Li, J., Li, S., Chen, D., He, L.: Optimal zeroing dynamics with applications to control of serial and parallel manipulators. Optim. Control Appl. Methods 39(4), 1393–1406 (2018)MathSciNetMATH Zhang, Y., Li, J., Li, S., Chen, D., He, L.: Optimal zeroing dynamics with applications to control of serial and parallel manipulators. Optim. Control Appl. Methods 39(4), 1393–1406 (2018)MathSciNetMATH
55.
Zurück zum Zitat Li, J., Zhang, Y., Li, S., Mao, M.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inform. 14(8), 3416–3425 (2018) Li, J., Zhang, Y., Li, S., Mao, M.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inform. 14(8), 3416–3425 (2018)
56.
Zurück zum Zitat Mathews, J.H., Fink, K.D.: Numerical Methods Using Matlab. Prentice-Hall, Upper Saddle River (2004) Mathews, J.H., Fink, K.D.: Numerical Methods Using Matlab. Prentice-Hall, Upper Saddle River (2004)
57.
Zurück zum Zitat Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)MATH Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)MATH
58.
Zurück zum Zitat Griffiths, D.F., Higham, D.J.: Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, London (2010)MATH Griffiths, D.F., Higham, D.J.: Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, London (2010)MATH
Metadaten
Titel
Continuous and discrete zeroing dynamics models using JMP function array and design formula for solving time-varying Sylvester-transpose matrix inequality
verfasst von
Yunong Zhang
Xiao Liu
Yihong Ling
Min Yang
Huanchang Huang
Publikationsdatum
10.07.2020
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 4/2021
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00946-1

Weitere Artikel der Ausgabe 4/2021

Numerical Algorithms 4/2021 Zur Ausgabe