Skip to main content

2018 | OriginalPaper | Buchkapitel

Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187 Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187
2.
Zurück zum Zitat Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–651 Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–651
3.
Zurück zum Zitat Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. In: MAbs. vol 5. Taylor & Francis, pp 443–452 Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. In: MAbs. vol 5. Taylor & Francis, pp 443–452
4.
Zurück zum Zitat Castilho LR (2014) Continuous animal cell perfusion processes: the first step toward integrated continuous biomanufacturing. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim Castilho LR (2014) Continuous animal cell perfusion processes: the first step toward integrated continuous biomanufacturing. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim
5.
Zurück zum Zitat Chotteau V (2015) Perfusion processes. In: Al-Rubeai M (ed) Animal cell culture. Springer, Cham, pp. 407–443 Chotteau V (2015) Perfusion processes. In: Al-Rubeai M (ed) Animal cell culture. Springer, Cham, pp. 407–443
6.
Zurück zum Zitat Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31(8):479–492 Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31(8):479–492
7.
Zurück zum Zitat Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 104(3):813–820 Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 104(3):813–820
8.
Zurück zum Zitat Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45(8):836–849 Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45(8):836–849
9.
Zurück zum Zitat Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475 Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475
10.
Zurück zum Zitat Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9(6):766–775 Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9(6):766–775
11.
Zurück zum Zitat Klutz S, Holtmann L, Lobedann M, Schembecker G (2016) Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci 141:63–74 Klutz S, Holtmann L, Lobedann M, Schembecker G (2016) Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci 141:63–74
12.
Zurück zum Zitat Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27 Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27
13.
Zurück zum Zitat Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219 Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219
14.
Zurück zum Zitat Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12 Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12
15.
Zurück zum Zitat Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19 Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19
16.
Zurück zum Zitat Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, Temming M, Schembecker G (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130 Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, Temming M, Schembecker G (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130
17.
Zurück zum Zitat Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029 Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029
18.
Zurück zum Zitat Chang HN, Yoo I-K, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12(3):467–487 Chang HN, Yoo I-K, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12(3):467–487
19.
Zurück zum Zitat Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765 Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765
20.
Zurück zum Zitat Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1-3):163–175PubMedCentral Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1-3):163–175PubMedCentral
21.
Zurück zum Zitat Boedeker BG (2013) Recombinant Factor VIII (Kogenate) for the treatment of hemophilia A: the first and only world-wide licensed recombinant protein produced in high-throughput perfusion culture. In: Knäblein J (ed) Modern biopharmaceuticals: recent success stories. Wiley, pp 429–443 Boedeker BG (2013) Recombinant Factor VIII (Kogenate) for the treatment of hemophilia A: the first and only world-wide licensed recombinant protein produced in high-throughput perfusion culture. In: Knäblein J (ed) Modern biopharmaceuticals: recent success stories. Wiley, pp 429–443
22.
Zurück zum Zitat Cohen EP, Eagle H (1961) A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J Exp Med 113(2):467–474PubMedCentral Cohen EP, Eagle H (1961) A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J Exp Med 113(2):467–474PubMedCentral
23.
Zurück zum Zitat Sinclair R (1974) Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro 10:295–305 Sinclair R (1974) Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro 10:295–305
24.
Zurück zum Zitat Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67(1):25–34 Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67(1):25–34
25.
Zurück zum Zitat Matsuoka H, Takeda T (2005) Effect of glucose and glutamine concentration on metabolism of animal cells in chemostat culture. In: Gòdia F, Fussenegger M (eds) Animal cell technology meets genomics. Springer, Dordrecht, pp. 617–620 Matsuoka H, Takeda T (2005) Effect of glucose and glutamine concentration on metabolism of animal cells in chemostat culture. In: Gòdia F, Fussenegger M (eds) Animal cell technology meets genomics. Springer, Dordrecht, pp. 617–620
26.
Zurück zum Zitat Matsuoka H, Watanabe J-y, Takeda T (2006) Influence of both glucose and glutamine concentration on mAb production rate in chemostat culture of CHO cells. In: Iijima S, Nishijima K-I (eds) Animal cell technology: basic and applied aspects. Springer, Dordrecht, pp. 121–125 Matsuoka H, Watanabe J-y, Takeda T (2006) Influence of both glucose and glutamine concentration on mAb production rate in chemostat culture of CHO cells. In: Iijima S, Nishijima K-I (eds) Animal cell technology: basic and applied aspects. Springer, Dordrecht, pp. 121–125
27.
Zurück zum Zitat Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-γ glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347 Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-γ glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347
28.
Zurück zum Zitat Desai SG (2015) Continuous and semi-continuous cell culture for production of blood clotting factors. J Biotechnol 213:20–27 Desai SG (2015) Continuous and semi-continuous cell culture for production of blood clotting factors. J Biotechnol 213:20–27
29.
Zurück zum Zitat Jen AC, Wake MC, Mikos AG (1996) Review: Hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364 Jen AC, Wake MC, Mikos AG (1996) Review: Hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364
30.
Zurück zum Zitat Kühtreiber WM, Lanza RP, Chick WL (eds) (2013) Cell encapsulation technology and therapeutics. Springer Science & Business Media, New York Kühtreiber WM, Lanza RP, Chick WL (eds) (2013) Cell encapsulation technology and therapeutics. Springer Science & Business Media, New York
31.
Zurück zum Zitat Meuwly F, Ruffieux P-A, Kadouri A, Von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56 Meuwly F, Ruffieux P-A, Kadouri A, Von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56
32.
Zurück zum Zitat Piret JM, Cooney CL (1990) Immobilized mammalian cell cultivation in hollow fiber bioreactors. Biotechnol Adv 8(4):763 Piret JM, Cooney CL (1990) Immobilized mammalian cell cultivation in hollow fiber bioreactors. Biotechnol Adv 8(4):763
33.
Zurück zum Zitat Tyo MA, Spier RE (1987) Dense cultures of animal cells at the industrial scale. Enzyme Microb Technol 9(9):514–520 Tyo MA, Spier RE (1987) Dense cultures of animal cells at the industrial scale. Enzyme Microb Technol 9(9):514–520
34.
Zurück zum Zitat Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S, Kida M (1986) Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol 24(4):282–286 Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S, Kida M (1986) Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol 24(4):282–286
35.
Zurück zum Zitat Shintani Y, Kohno Y-I, Sawada H, Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnology 6(3):197–208 Shintani Y, Kohno Y-I, Sawada H, Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnology 6(3):197–208
36.
Zurück zum Zitat Takazawa Y, Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridomas. Appl Microbiol Biotechnol 32(3):280–284 Takazawa Y, Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridomas. Appl Microbiol Biotechnol 32(3):280–284
37.
Zurück zum Zitat Hülscher M, Scheibler U, Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39(4):442–446 Hülscher M, Scheibler U, Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39(4):442–446
38.
Zurück zum Zitat Feder J, Tolbert WR (1983) The large-scale cultivation of mammalian cells. Sci Am 248:36–43 Feder J, Tolbert WR (1983) The large-scale cultivation of mammalian cells. Sci Am 248:36–43
39.
Zurück zum Zitat Ghanem A, Shuler M (2000) Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol Prog 16(3):471–479 Ghanem A, Shuler M (2000) Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol Prog 16(3):471–479
40.
Zurück zum Zitat Kim JH, Park JH, Kang WK, Yoon SK (1999) Perfusion culture using microcarrier for the production of Varicella-Zoster virus in human embryonic lung cells. Biotechnol Lett 21(2):129–133 Kim JH, Park JH, Kang WK, Yoon SK (1999) Perfusion culture using microcarrier for the production of Varicella-Zoster virus in human embryonic lung cells. Biotechnol Lett 21(2):129–133
41.
Zurück zum Zitat Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol Bioeng 32(8):1001–1014 Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol Bioeng 32(8):1001–1014
42.
Zurück zum Zitat Croughan MS, Hamel JF, Wang DI (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29(1):130–141 Croughan MS, Hamel JF, Wang DI (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29(1):130–141
43.
Zurück zum Zitat Thompson KJ, Wilson JS (1998) Particle settler for use in cell culture. US Patent US5817505 A Thompson KJ, Wilson JS (1998) Particle settler for use in cell culture. US Patent US5817505 A
44.
Zurück zum Zitat Acrivos A, Herbolzheimer E (1979) Enhanced sedimentation in settling tanks with inclined walls. J Fluid Mech 92(03):435–457 Acrivos A, Herbolzheimer E (1979) Enhanced sedimentation in settling tanks with inclined walls. J Fluid Mech 92(03):435–457
45.
Zurück zum Zitat Boycott A (1920) Sedimentation of blood corpuscles. Nature 104:532 Boycott A (1920) Sedimentation of blood corpuscles. Nature 104:532
46.
Zurück zum Zitat Searles J, Todd P, Kompala D (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10(2):198–206 Searles J, Todd P, Kompala D (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10(2):198–206
47.
Zurück zum Zitat Kohara Y, Ueda H, Suzuki E (1995) Enhanced settling of mammalian cells in tanks with inclined plates/simulation by fluid mechanical model and experiment. J Chem Eng Japan 28(6):703–707 Kohara Y, Ueda H, Suzuki E (1995) Enhanced settling of mammalian cells in tanks with inclined plates/simulation by fluid mechanical model and experiment. J Chem Eng Japan 28(6):703–707
48.
Zurück zum Zitat Shen Y, Yanagimachi K (2011) CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Biotechnol Prog 27(5):1282–1296 Shen Y, Yanagimachi K (2011) CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Biotechnol Prog 27(5):1282–1296
49.
Zurück zum Zitat Wang Z, Belovich JM (2010) A simple apparatus for measuring cell settling velocity. Biotechnol Prog 26(5):1361–1366 Wang Z, Belovich JM (2010) A simple apparatus for measuring cell settling velocity. Biotechnol Prog 26(5):1361–1366
50.
Zurück zum Zitat Choo CY, Tian Y, Kim WS, Blatter E, Conary J, Brady CP (2007) High-level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler. Biotechnol Prog 23(1):225–231 Choo CY, Tian Y, Kim WS, Blatter E, Conary J, Brady CP (2007) High-level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler. Biotechnol Prog 23(1):225–231
51.
Zurück zum Zitat Lipscomb ML, Mowry MC, Kompala DS (2004) Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 20(5):1402–1407 Lipscomb ML, Mowry MC, Kompala DS (2004) Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 20(5):1402–1407
52.
Zurück zum Zitat Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058 Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058
53.
Zurück zum Zitat Batt BC, Davis RH, Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6(6):458–464 Batt BC, Davis RH, Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6(6):458–464
54.
Zurück zum Zitat Hecht V, Duvar S, Ziehr H, Burg J, Jockwer A (2014) Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog 30(3):607–615 Hecht V, Duvar S, Ziehr H, Burg J, Jockwer A (2014) Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog 30(3):607–615
55.
Zurück zum Zitat Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229 Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229
56.
Zurück zum Zitat Hamamoto K, Ishimaru K, Tokashiki M (1989) Perfusion culture of hybridoma cells using a centrifuge to separate cells from culture mixture. J Ferment Bioeng 67(3):190–194 Hamamoto K, Ishimaru K, Tokashiki M (1989) Perfusion culture of hybridoma cells using a centrifuge to separate cells from culture mixture. J Ferment Bioeng 67(3):190–194
57.
Zurück zum Zitat Takamatsu H, Hamamoto K, Ishimura K, Yokoyama S, Tokashiki M (1996) Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple settling zones. Appl Microbiol Biotechnol 45(4):454–457 Takamatsu H, Hamamoto K, Ishimura K, Yokoyama S, Tokashiki M (1996) Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple settling zones. Appl Microbiol Biotechnol 45(4):454–457
58.
Zurück zum Zitat Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology 3(3):239–244 Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology 3(3):239–244
59.
Zurück zum Zitat Björling T, Dudel U, Fenge C (1995) Evaluation of a cell separator in large scale perfusion culture. In: Animal cell technology: developments towards the 21st century. Springer, pp 671–675 Björling T, Dudel U, Fenge C (1995) Evaluation of a cell separator in large scale perfusion culture. In: Animal cell technology: developments towards the 21st century. Springer, pp 671–675
60.
Zurück zum Zitat Jäger V (1992) High density perfusion culture of animal cells using a novel continuous flow centrifuge. In: Animal cell technology: Basic & applied aspects. Springer, pp 209–216 Jäger V (1992) High density perfusion culture of animal cells using a novel continuous flow centrifuge. In: Animal cell technology: Basic & applied aspects. Springer, pp 209–216
61.
Zurück zum Zitat Chatzisavido N, Björling T, Fenge C, Boork S, Lindner-Olsson E, Apelman S (1994) A continuous cell centrifuge for lab scale perfusion processes of mammalian cells. In: Animal cell technology: basic & applied aspects. Springer, pp 463–468 Chatzisavido N, Björling T, Fenge C, Boork S, Lindner-Olsson E, Apelman S (1994) A continuous cell centrifuge for lab scale perfusion processes of mammalian cells. In: Animal cell technology: basic & applied aspects. Springer, pp 463–468
62.
Zurück zum Zitat Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA (1996) Use of the Centritech Lab Centrifuge for perfusion culture of hybridoma cells in protein-free medium. Biotechnol Prog 12(6):855–864 Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA (1996) Use of the Centritech Lab Centrifuge for perfusion culture of hybridoma cells in protein-free medium. Biotechnol Prog 12(6):855–864
63.
Zurück zum Zitat Kim BJ, Chang HN, Oh DJ (2007) Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Biotechnol Prog 23(5):1186–1197 Kim BJ, Chang HN, Oh DJ (2007) Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Biotechnol Prog 23(5):1186–1197
64.
Zurück zum Zitat Kim S-C, An S, Kim H-K, Park B-S, Na K-H, Kim B-G (2015) Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology 68:1689–1696 Kim S-C, An S, Kim H-K, Park B-S, Na K-H, Kim B-G (2015) Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology 68:1689–1696
65.
Zurück zum Zitat Pattasseril J, Varadaraju H, Lock L, Rowley JA (2013) Downstream technology landscape for large-scale therapeutic cell processing. Bioprocess Int 11(3):38–47 Pattasseril J, Varadaraju H, Lock L, Rowley JA (2013) Downstream technology landscape for large-scale therapeutic cell processing. Bioprocess Int 11(3):38–47
66.
Zurück zum Zitat Mehta S (2014) Automated single-use centrifugation solution for diverse biomanufacturing process. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 385–400 Mehta S (2014) Automated single-use centrifugation solution for diverse biomanufacturing process. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 385–400
67.
Zurück zum Zitat Kilburn D, Clarke D, Coakley W, Bardsley D (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34(4):559–562 Kilburn D, Clarke D, Coakley W, Bardsley D (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34(4):559–562
68.
Zurück zum Zitat Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444 Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444
69.
Zurück zum Zitat Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Groschl M, Benes E (1994) A novel ultrasonic resonance field device for the retentiojn of animal cells. Biotechnol Prog 10(4):428–432 Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Groschl M, Benes E (1994) A novel ultrasonic resonance field device for the retentiojn of animal cells. Biotechnol Prog 10(4):428–432
70.
Zurück zum Zitat Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12(1):73–76 Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12(1):73–76
71.
Zurück zum Zitat Bierau H, Perani A, Al-Rubeai M, Emery A (1998) A comparison of intensive cell culture bioreactors operating with hybridomas modified for inhibited apoptotic response. J Biotechnol 62(3):195–207 Bierau H, Perani A, Al-Rubeai M, Emery A (1998) A comparison of intensive cell culture bioreactors operating with hybridomas modified for inhibited apoptotic response. J Biotechnol 62(3):195–207
72.
Zurück zum Zitat Crowley J (2004) Using sound waves for cGMP manufacturing of a fusion protein with mammalian cells. Bioprocess Int 2(3):46–50 Crowley J (2004) Using sound waves for cGMP manufacturing of a fusion protein with mammalian cells. Bioprocess Int 2(3):46–50
73.
Zurück zum Zitat Gorenflo VM, Angepat S, Bowen BD, Piret JM (2003) Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol Prog 19(1):30–36 Gorenflo VM, Angepat S, Bowen BD, Piret JM (2003) Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol Prog 19(1):30–36
74.
Zurück zum Zitat Dalm MC, Cuijten SM, Van Grunsven WM, Tramper J, Martens DE (2004) Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor. Part I. Cell density, viability, and cell-cycle distribution. Biotechnol Bioeng 88(5):547–557 Dalm MC, Cuijten SM, Van Grunsven WM, Tramper J, Martens DE (2004) Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor. Part I. Cell density, viability, and cell-cycle distribution. Biotechnol Bioeng 88(5):547–557
75.
Zurück zum Zitat Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM (2005) Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng 90(6):746–753 Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM (2005) Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng 90(6):746–753
76.
Zurück zum Zitat Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80(4):438–444 Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80(4):438–444
77.
Zurück zum Zitat Pui PW, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG, Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11(2):146–152 Pui PW, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG, Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11(2):146–152
78.
Zurück zum Zitat Dalm MC, Jansen M, Keijzer TM, van Grunsven WM, Oudshoorn A, Tramper J, Martens DE (2005) Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Biotechnol Bioeng 91(7):894–900 Dalm MC, Jansen M, Keijzer TM, van Grunsven WM, Oudshoorn A, Tramper J, Martens DE (2005) Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Biotechnol Bioeng 91(7):894–900
79.
Zurück zum Zitat Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449 Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449
80.
Zurück zum Zitat Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450 Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450
81.
Zurück zum Zitat Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Nat Biotechnol 12(3):281–284 Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Nat Biotechnol 12(3):281–284
82.
Zurück zum Zitat Medronho R, Schuetze J, Deckwer W (2005) Numerical simulation of hydrocyclones for cell separation. Lat Am Appl Res 35:1–8 Medronho R, Schuetze J, Deckwer W (2005) Numerical simulation of hydrocyclones for cell separation. Lat Am Appl Res 35:1–8
83.
Zurück zum Zitat Elsayed EA, Wadaan MA (2013) The potential of hydrocyclone application for mammalian cell separation in perfusion cultivation bioreactors. Int J Biotechnol Wellness Industries 2(4):153 Elsayed EA, Wadaan MA (2013) The potential of hydrocyclone application for mammalian cell separation in perfusion cultivation bioreactors. Int J Biotechnol Wellness Industries 2(4):153
84.
Zurück zum Zitat Jockwer A, Medronho RA, Wagner R, Anspach F, Deckwer W-D (2001) The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Animal Cell Technology: From Target to Market. Springer, pp 301–306 Jockwer A, Medronho RA, Wagner R, Anspach F, Deckwer W-D (2001) The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Animal Cell Technology: From Target to Market. Springer, pp 301–306
85.
Zurück zum Zitat Elsayed EA, Medronho R, Wagner R, Deckwer WD (2006) Use of hydrocyclones for mammalian cell retention: separation efficiency and cell viability (Part 1). Eng Life Sci 6(4):347–354 Elsayed EA, Medronho R, Wagner R, Deckwer WD (2006) Use of hydrocyclones for mammalian cell retention: separation efficiency and cell viability (Part 1). Eng Life Sci 6(4):347–354
86.
Zurück zum Zitat Pinto RC, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67 Pinto RC, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67
87.
Zurück zum Zitat Castilho LR, Medronho RA (2008) Animal cell separation. In: Castilho LR, Moraes AM, Augusto EF, Butler M (eds) Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis, New York, pp. 273–294 Castilho LR, Medronho RA (2008) Animal cell separation. In: Castilho LR, Moraes AM, Augusto EF, Butler M (eds) Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis, New York, pp. 273–294
88.
Zurück zum Zitat Elsayed EA, Wagner R (2011) Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: effect of hydrocyclone operating pressure. In: BMC proceedings, 2011. vol Suppl 8. BioMed Central Ltd, p P65 Elsayed EA, Wagner R (2011) Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: effect of hydrocyclone operating pressure. In: BMC proceedings, 2011. vol Suppl 8. BioMed Central Ltd, p P65
89.
Zurück zum Zitat Himmelfarb P, Thayer P, Martin H (1969) Spin filter culture: the propagation of mammalian cells in suspension. Science 164(3879):555–557 Himmelfarb P, Thayer P, Martin H (1969) Spin filter culture: the propagation of mammalian cells in suspension. Science 164(3879):555–557
90.
Zurück zum Zitat Reuveny S, Velez D, Miller L, Macmillan J (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J Immunol Methods 86(1):61–69 Reuveny S, Velez D, Miller L, Macmillan J (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J Immunol Methods 86(1):61–69
91.
Zurück zum Zitat Tolbert WR, Peder J, Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17(10):885–890 Tolbert WR, Peder J, Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17(10):885–890
92.
Zurück zum Zitat Esclade LR, Carrel S, Péringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38(2):159–168 Esclade LR, Carrel S, Péringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38(2):159–168
93.
Zurück zum Zitat Emery A, Jan D-H, Al-Rueai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43(6):1028–1033 Emery A, Jan D-H, Al-Rueai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43(6):1028–1033
94.
Zurück zum Zitat Deo YM, Mahadevan MD, Fuchs R (1996) Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12(1):57–64 Deo YM, Mahadevan MD, Fuchs R (1996) Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12(1):57–64
95.
Zurück zum Zitat Figueredo-Cardero A, Chico E, Castilho LR, Medronho RA (2009) CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh. Cytotechnology 61(1-2):55–64PubMedCentral Figueredo-Cardero A, Chico E, Castilho LR, Medronho RA (2009) CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh. Cytotechnology 61(1-2):55–64PubMedCentral
96.
Zurück zum Zitat Yabannavar V, Singh V, Connelly N (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40(8):925–933 Yabannavar V, Singh V, Connelly N (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40(8):925–933
97.
Zurück zum Zitat Avgerinos GC, Drapeau D, Socolow JS, Mao J-i, Hsiao K, Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Nat Biotechnol 8(1):54–58 Avgerinos GC, Drapeau D, Socolow JS, Mao J-i, Hsiao K, Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Nat Biotechnol 8(1):54–58
98.
Zurück zum Zitat Castilho LR, Anspach FB, Deckwer WD (2002) An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter. Biotechnol Prog 18(4):776–781 Castilho LR, Anspach FB, Deckwer WD (2002) An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter. Biotechnol Prog 18(4):776–781
99.
Zurück zum Zitat Vallez-Chetreanu F, Ferreira LF, Rabe R, von Stockar U, Marison I (2007) An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol 130(3):265–273 Vallez-Chetreanu F, Ferreira LF, Rabe R, von Stockar U, Marison I (2007) An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol 130(3):265–273
100.
Zurück zum Zitat Yabannavar V, Singh V, Connelly N (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43(2):159–164 Yabannavar V, Singh V, Connelly N (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43(2):159–164
101.
Zurück zum Zitat Kyung Y-S, Peshwa MV, Gryte DM, Hu W-S (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14(3):183–190 Kyung Y-S, Peshwa MV, Gryte DM, Hu W-S (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14(3):183–190
102.
Zurück zum Zitat Seamans TC, Hu W-S (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70(4):241–245 Seamans TC, Hu W-S (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70(4):241–245
103.
Zurück zum Zitat Brennan AJ, Shevitz J, Macmillan JD (1987) A perfusion system for antibody production by shear-sensitive hybridoma cells in a stirred reactor. Biotechnol Tech 1(3):169–174 Brennan AJ, Shevitz J, Macmillan JD (1987) A perfusion system for antibody production by shear-sensitive hybridoma cells in a stirred reactor. Biotechnol Tech 1(3):169–174
104.
Zurück zum Zitat de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Long-term perfusion culture of hybridoma: a “grow or die” cell cycle system. Biotechnol Bioeng 38(7):781–787 de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Long-term perfusion culture of hybridoma: a “grow or die” cell cycle system. Biotechnol Bioeng 38(7):781–787
105.
Zurück zum Zitat Velez D, Miller L, Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33(7):938–940 Velez D, Miller L, Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33(7):938–940
106.
Zurück zum Zitat Hiller G, Clark D, Blanch H (1993) Cell retention–chemostat studies of hybridoma cells—analysis of hybridoma growth and metabolism in continuous suspension culture in serum-free medium. Biotechnol Bioeng 42(2):185–195 Hiller G, Clark D, Blanch H (1993) Cell retention–chemostat studies of hybridoma cells—analysis of hybridoma growth and metabolism in continuous suspension culture in serum-free medium. Biotechnol Bioeng 42(2):185–195
107.
Zurück zum Zitat Greenfield P, Guillaume J-M, Randerson D, Smith C (1991) Experience in scale-up of homogeneous perfusion culture for hybridomas. Bioprocess Eng 6(5):213–219 Greenfield P, Guillaume J-M, Randerson D, Smith C (1991) Experience in scale-up of homogeneous perfusion culture for hybridomas. Bioprocess Eng 6(5):213–219
108.
Zurück zum Zitat Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential-flow filtration device. Cytotechnology 14(1):61–66 Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential-flow filtration device. Cytotechnology 14(1):61–66
109.
Zurück zum Zitat Karst DJ, Serra E, Villiger TK, Soos M, Morbidelli M (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26 Karst DJ, Serra E, Villiger TK, Soos M, Morbidelli M (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26
110.
Zurück zum Zitat Martin CS, Padilla-Zamudio J, Rank D, McInnis P, Kozlov M, Reynolds S, Parella J, Madrid L (2015) Novel small scale TFF cell retention device for perfusion cell culture systems. In: Gòdia F (ed) 24th European Society for Animal Cell Technology (ESACT) Meeting, Barcelona, Spain, 31 May–3 Jun 2015. vol 9, p 1 Martin CS, Padilla-Zamudio J, Rank D, McInnis P, Kozlov M, Reynolds S, Parella J, Madrid L (2015) Novel small scale TFF cell retention device for perfusion cell culture systems. In: Gòdia F (ed) 24th European Society for Animal Cell Technology (ESACT) Meeting, Barcelona, Spain, 31 May–3 Jun 2015. vol 9, p 1
111.
Zurück zum Zitat Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I Effect of the cell density on the process. Biotechnol Prog 29(3):754–767PubMedCentral Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I Effect of the cell density on the process. Biotechnol Prog 29(3):754–767PubMedCentral
112.
Zurück zum Zitat Kelly W, Scully J, Zhang D, Feng G, Lavengood M, Condon J, Knighton J, Bhatia R (2014) Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnol Prog 30(6):1291–1300 Kelly W, Scully J, Zhang D, Feng G, Lavengood M, Condon J, Knighton J, Bhatia R (2014) Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnol Prog 30(6):1291–1300
113.
Zurück zum Zitat Xu S, Chen H (2016) High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 231:149–159 Xu S, Chen H (2016) High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 231:149–159
114.
Zurück zum Zitat Padawer I, Ling WLW, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29(3):829–832 Padawer I, Ling WLW, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29(3):829–832
115.
Zurück zum Zitat Wright B, Bruninghaus M, Vrabel M, Walther J, Shah N, Bae S, Johnson T, Yin J, Zhou W, Konstantinov K (2015) A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bioprocess Int 13 Wright B, Bruninghaus M, Vrabel M, Walther J, Shah N, Bae S, Johnson T, Yin J, Zhou W, Konstantinov K (2015) A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bioprocess Int 13
116.
Zurück zum Zitat Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog 30(3):616–625 Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog 30(3):616–625
117.
Zurück zum Zitat Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829 Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829
118.
Zurück zum Zitat Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int 24:s4–s11 Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int 24:s4–s11
119.
Zurück zum Zitat Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23(1):255–264 Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23(1):255–264
120.
Zurück zum Zitat Roth G, Smith CE, Schoofs GM, Montgomery TJ, Ayala JL, Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. Pharm Technol 21(10) Roth G, Smith CE, Schoofs GM, Montgomery TJ, Ayala JL, Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. Pharm Technol 21(10)
121.
Zurück zum Zitat Konstantinov KB, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. In: Scheper T, Hu W-S (eds) Advances in biochemical engineering/biotechnology: cell culture engineering. Springer, Berlin, pp. 75–98 Konstantinov KB, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. In: Scheper T, Hu W-S (eds) Advances in biochemical engineering/biotechnology: cell culture engineering. Springer, Berlin, pp. 75–98
122.
Zurück zum Zitat Goudar CT, Matanguihan R, Long E, Cruz C, Zhang C, Piret JM, Konstantinov KB (2007) Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures. Biotechnol Bioeng 96(6):1107–1117 Goudar CT, Matanguihan R, Long E, Cruz C, Zhang C, Piret JM, Konstantinov KB (2007) Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures. Biotechnol Bioeng 96(6):1107–1117
123.
Zurück zum Zitat Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U, Marison I (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72(5):515–522 Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U, Marison I (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72(5):515–522
124.
Zurück zum Zitat Konstantinov KB, Ys T, Moles D, Matanguihan R (1996) Control of long-term perfusion chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 12(1):100–109 Konstantinov KB, Ys T, Moles D, Matanguihan R (1996) Control of long-term perfusion chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 12(1):100–109
125.
Zurück zum Zitat Meuwly F, Papp F, Ruffieux P-A, Bernard A, Kadouri A, Von Stockar U (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122(1):122–129 Meuwly F, Papp F, Ruffieux P-A, Bernard A, Kadouri A, Von Stockar U (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122(1):122–129
126.
Zurück zum Zitat Ozturk S, Thrift J, Blackie J, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53(4):372–378 Ozturk S, Thrift J, Blackie J, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53(4):372–378
127.
Zurück zum Zitat Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1-3):35–48PubMedCentral Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1-3):35–48PubMedCentral
128.
Zurück zum Zitat Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63(3):187–198 Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63(3):187–198
129.
Zurück zum Zitat Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221 Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221
130.
Zurück zum Zitat Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362 Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362
131.
Zurück zum Zitat Kim BJ, Oh DJ, Chang HN (2008) Limited use of Centritech Lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog 24(1):166–174 Kim BJ, Oh DJ, Chang HN (2008) Limited use of Centritech Lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog 24(1):166–174
132.
Zurück zum Zitat Knaack C, André G, Chavarie C (1994) Conical bioreactor with internal lamella settler for perfusion culture of suspension cells. In: Spier R, Griffiths J, Berthold W (eds) Animal cell technology: products of today. Prospects for tomorrow. Butterworth-Heinemann, Oxford, pp. 230–233 Knaack C, André G, Chavarie C (1994) Conical bioreactor with internal lamella settler for perfusion culture of suspension cells. In: Spier R, Griffiths J, Berthold W (eds) Animal cell technology: products of today. Prospects for tomorrow. Butterworth-Heinemann, Oxford, pp. 230–233
133.
Zurück zum Zitat Mercille S, Johnson M, Lemieux R, Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnol Bioeng 43(9):833–846 Mercille S, Johnson M, Lemieux R, Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnol Bioeng 43(9):833–846
134.
Zurück zum Zitat Mette K, Lassen K, Emborg C (1994) Perfusion systems for hybridoma cells based on sedimentation in chambers and erlenmeyer flasks. FEMS Microbiol Rev 14(1):89–91 Mette K, Lassen K, Emborg C (1994) Perfusion systems for hybridoma cells based on sedimentation in chambers and erlenmeyer flasks. FEMS Microbiol Rev 14(1):89–91
135.
Zurück zum Zitat Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503 Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503
136.
Zurück zum Zitat Vogel JH, Nguyen H, Pritschet M, Van Wegen R, Konstantinov K (2002) Continuous annular chromatography: general characterization and application for the isolation of recombinant protein drugs. Biotechnol Bioeng 80(5):559–568 Vogel JH, Nguyen H, Pritschet M, Van Wegen R, Konstantinov K (2002) Continuous annular chromatography: general characterization and application for the isolation of recombinant protein drugs. Biotechnol Bioeng 80(5):559–568
137.
Zurück zum Zitat Bridges S, Barker P (1992) Continuous cross-current chromatographic refiners. In: Ganetsos G, Barker P (eds) Preparative and production scale chromatography, vol 61. Marcel Dekker, Inc., New York, NY, pp. 113–126 Bridges S, Barker P (1992) Continuous cross-current chromatographic refiners. In: Ganetsos G, Barker P (eds) Preparative and production scale chromatography, vol 61. Marcel Dekker, Inc., New York, NY, pp. 113–126
138.
Zurück zum Zitat Martin AJP (1949) Summarizing paper. Discuss Faraday Soc 7:332–336 Martin AJP (1949) Summarizing paper. Discuss Faraday Soc 7:332–336
139.
Zurück zum Zitat Giddings J (1962) Theory of minimum time operation in gas chromatography. Anal Chem 34(3):314–319 Giddings J (1962) Theory of minimum time operation in gas chromatography. Anal Chem 34(3):314–319
140.
Zurück zum Zitat Fox J (1969) Continuous chromatography apparatus: II. Operation. J Chromatogr A 43:55–60 Fox J (1969) Continuous chromatography apparatus: II. Operation. J Chromatogr A 43:55–60
141.
Zurück zum Zitat Fox J, Calhoun R, Eglinton W (1969) Continuous chromatography apparatus: I. Construction. J Chromatogr A 43:48–54 Fox J, Calhoun R, Eglinton W (1969) Continuous chromatography apparatus: I. Construction. J Chromatogr A 43:48–54
142.
Zurück zum Zitat Nicholas R, Fox J (1969) Continuous chromatography apparatus: III. Application. J Chromatogr A 43:61–65 Nicholas R, Fox J (1969) Continuous chromatography apparatus: III. Application. J Chromatogr A 43:61–65
143.
Zurück zum Zitat Bloomingburg GF, Carta G (1994) Separation of protein mixtures by continuous annular chromatography with step elution. Chem Eng J 55(1-2):B19–B27 Bloomingburg GF, Carta G (1994) Separation of protein mixtures by continuous annular chromatography with step elution. Chem Eng J 55(1-2):B19–B27
144.
Zurück zum Zitat Giovannini R, Freitag R (2001) Isolation of a recombinant antibody from cell culture supernatant: continuous annular versus batch and expanded-bed chromatography. Biotechnol Bioeng 73(6):522–529 Giovannini R, Freitag R (2001) Isolation of a recombinant antibody from cell culture supernatant: continuous annular versus batch and expanded-bed chromatography. Biotechnol Bioeng 73(6):522–529
145.
Zurück zum Zitat Takahashi Y, Goto S (1991) Continuous separations of amino acids by using an annular chromatograph with rotating inlet and outlet. Sep Sci Technol 26(1):1–13 Takahashi Y, Goto S (1991) Continuous separations of amino acids by using an annular chromatograph with rotating inlet and outlet. Sep Sci Technol 26(1):1–13
146.
Zurück zum Zitat Hilbrig F, Freitag R (2003) Continuous annular chromatography. J Chromatogr B 790(1):1–15 Hilbrig F, Freitag R (2003) Continuous annular chromatography. J Chromatogr B 790(1):1–15
147.
Zurück zum Zitat Bloomingburg GF, Bauer JS, Carta G, Byers CH (1991) Continuous separation of proteins by annular chromatography. Ind Eng Chem Res 30(5):1061–1067 Bloomingburg GF, Bauer JS, Carta G, Byers CH (1991) Continuous separation of proteins by annular chromatography. Ind Eng Chem Res 30(5):1061–1067
148.
Zurück zum Zitat Byers CH, Sisson WG, Decarli JP, Carta G (1990) Sugar separations on a pilot scale by continuous annular chromatography. Biotechnol Prog 6(1):13–20 Byers CH, Sisson WG, Decarli JP, Carta G (1990) Sugar separations on a pilot scale by continuous annular chromatography. Biotechnol Prog 6(1):13–20
149.
Zurück zum Zitat Scott CD, Spence RD, Sisson WG (1976) Pressurized, annular chromatograph for continuous separations. J Chromatogr A 126:381–400 Scott CD, Spence RD, Sisson WG (1976) Pressurized, annular chromatograph for continuous separations. J Chromatogr A 126:381–400
150.
Zurück zum Zitat De Carli JP, Carta G, Byers CH (1990) Displacement separations by continuous annular chromatography. AICHE J 36(8):1220–1228 De Carli JP, Carta G, Byers CH (1990) Displacement separations by continuous annular chromatography. AICHE J 36(8):1220–1228
151.
Zurück zum Zitat Buchacher A, Iberer G, Jungbauer A, Schwinn H, Josic D (2001) Continuous removal of protein aggregates by annular chromatography. Biotechnol Prog 17(1):140–149 Buchacher A, Iberer G, Jungbauer A, Schwinn H, Josic D (2001) Continuous removal of protein aggregates by annular chromatography. Biotechnol Prog 17(1):140–149
152.
Zurück zum Zitat Iberer G, Schwinn H, Josić D, Jungbauer A, Buchacher A (2001) Improved performance of protein separation by continuous annular chromatography in the size-exclusion mode. J Chromatogr A 921(1):15–24 Iberer G, Schwinn H, Josić D, Jungbauer A, Buchacher A (2001) Improved performance of protein separation by continuous annular chromatography in the size-exclusion mode. J Chromatogr A 921(1):15–24
153.
Zurück zum Zitat Sisson W, Begovich J, Byers C, Scott C (1987) Application of continuous annular chromatography to size-exclusion separations. Paper presented at the American Chemical Society national meeting, New Orleans, 30 August 1987 Sisson W, Begovich J, Byers C, Scott C (1987) Application of continuous annular chromatography to size-exclusion separations. Paper presented at the American Chemical Society national meeting, New Orleans, 30 August 1987
154.
Zurück zum Zitat Uretschlaeger A, Jungbauer A (2002) Two separation modes combined in one column: sequential ion-exchange separation and size-exclusion chromatography of green fluorescent protein. Sep Sci Technol 37(7):1683–1697 Uretschlaeger A, Jungbauer A (2002) Two separation modes combined in one column: sequential ion-exchange separation and size-exclusion chromatography of green fluorescent protein. Sep Sci Technol 37(7):1683–1697
155.
Zurück zum Zitat Besselink T, van der Padt A, Janssen AE, Boom RM (2013) Are axial and radial flow chromatography different? J Chromatogr A 1271(1):105–114 Besselink T, van der Padt A, Janssen AE, Boom RM (2013) Are axial and radial flow chromatography different? J Chromatogr A 1271(1):105–114
156.
Zurück zum Zitat Gu T (2009) Chromatography, radial flow. Encyclopedia of Bioprocess Technology, In Gu T (2009) Chromatography, radial flow. Encyclopedia of Bioprocess Technology, In
157.
Zurück zum Zitat Cabanne C, Raedts M, Zavadzky E, Santarelli X (2007) Evaluation of radial chromatography versus axial chromatography, practical approach. J Chromatogr B 845(2):191–199 Cabanne C, Raedts M, Zavadzky E, Santarelli X (2007) Evaluation of radial chromatography versus axial chromatography, practical approach. J Chromatogr B 845(2):191–199
158.
Zurück zum Zitat Kinna A, Tolner B, Rota EM, Titchener-Hooker N, Nesbeth D, Chester K (2016) IMAC capture of recombinant protein from unclarified mammalian cell feed streams. Biotechnol Bioeng 113(1):130–140 Kinna A, Tolner B, Rota EM, Titchener-Hooker N, Nesbeth D, Chester K (2016) IMAC capture of recombinant protein from unclarified mammalian cell feed streams. Biotechnol Bioeng 113(1):130–140
159.
Zurück zum Zitat Sun T, Chen G, Liu Y, Bu F, Wen M (2000) Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column. Biomed Chromatogr 14(7):478–482 Sun T, Chen G, Liu Y, Bu F, Wen M (2000) Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column. Biomed Chromatogr 14(7):478–482
160.
Zurück zum Zitat Weaver K, Chen D, Walton L, Elwell L, Ray P (1990) Uridine phosphorylase purified from total crude extracts of E. coli using Q Sepharose and radial-flow chromatography. BioPharm 3(7):25–28 Weaver K, Chen D, Walton L, Elwell L, Ray P (1990) Uridine phosphorylase purified from total crude extracts of E. coli using Q Sepharose and radial-flow chromatography. BioPharm 3(7):25–28
161.
Zurück zum Zitat Gu T, Tsai G-J, Tsao GT (1991) A theoretical study of multicomponent radial flow chromatography. Chem Eng Sci 46(5):1279–1288 Gu T, Tsai G-J, Tsao GT (1991) A theoretical study of multicomponent radial flow chromatography. Chem Eng Sci 46(5):1279–1288
162.
Zurück zum Zitat Huang SH, Lee W-C, Tsao GT (1988) Mathematical models of radial chromatography. Chem Eng J 38(3):179–186 Huang SH, Lee W-C, Tsao GT (1988) Mathematical models of radial chromatography. Chem Eng J 38(3):179–186
163.
Zurück zum Zitat Tharakan J, Belizaire M (1995) Ligand efficiency in axial and radial flow immunoaffinity chromatography of factor IX. J Chromatogr A 702(1):191–196 Tharakan J, Belizaire M (1995) Ligand efficiency in axial and radial flow immunoaffinity chromatography of factor IX. J Chromatogr A 702(1):191–196
164.
Zurück zum Zitat Lay M, Fee C, Swan J (2006) Continuous radial flow chromatography of proteins. Food Bioprod Process 84(1):78–83 Lay M, Fee C, Swan J (2006) Continuous radial flow chromatography of proteins. Food Bioprod Process 84(1):78–83
165.
Zurück zum Zitat Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2,985,589 Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2,985,589
166.
Zurück zum Zitat Juza M, Mazzotti M, Morbidelli M (2000) Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol 18(3):108–118 Juza M, Mazzotti M, Morbidelli M (2000) Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol 18(3):108–118
167.
Zurück zum Zitat Rodrigues AE, Pereira C, Minceva M, Pais L, Ribeiro AM, Ribeiro A, Silva M, Graça N, Santos JC (2015) Simulated moving bed technology: principles, design and process applications. Elsevier, Oxford Rodrigues AE, Pereira C, Minceva M, Pais L, Ribeiro AM, Ribeiro A, Silva M, Graça N, Santos JC (2015) Simulated moving bed technology: principles, design and process applications. Elsevier, Oxford
168.
Zurück zum Zitat Xie Y, Mun S, Kim J, Wang NHL (2002) Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification. Biotechnol Prog 18(6):1332–1344 Xie Y, Mun S, Kim J, Wang NHL (2002) Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification. Biotechnol Prog 18(6):1332–1344
169.
Zurück zum Zitat Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63 Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63
170.
Zurück zum Zitat Imamoglu S (2002) Simulated moving bed chromatography (SMB) for application in bioseparation. Modern Advances in Chromatography. Springer, In, pp. 211–231 Imamoglu S (2002) Simulated moving bed chromatography (SMB) for application in bioseparation. Modern Advances in Chromatography. Springer, In, pp. 211–231
171.
Zurück zum Zitat Mun S, Xie Y, Kim J-H, Wang N-HL (2003) Optimal design of a size-exclusion tandem simulated moving bed for insulin purification. Ind Eng Chem Res 42(9):1977–1993 Mun S, Xie Y, Kim J-H, Wang N-HL (2003) Optimal design of a size-exclusion tandem simulated moving bed for insulin purification. Ind Eng Chem Res 42(9):1977–1993
172.
Zurück zum Zitat Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216(4):709–738 Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216(4):709–738
173.
Zurück zum Zitat Xie Y, Koo Y-M, Wang N-HL (2001) Preparative chromatographic separation: simulated moving bed and modified chromatography methods. Biotechnol Bioprocess Eng 6(6):363–375 Xie Y, Koo Y-M, Wang N-HL (2001) Preparative chromatographic separation: simulated moving bed and modified chromatography methods. Biotechnol Bioprocess Eng 6(6):363–375
174.
Zurück zum Zitat Gottschlich N, Kasche V (1997) Purification of monoclonal antibodies by simulated moving-bed chromatography. J Chromatogr A 765(2):201–206 Gottschlich N, Kasche V (1997) Purification of monoclonal antibodies by simulated moving-bed chromatography. J Chromatogr A 765(2):201–206
175.
Zurück zum Zitat Keβler LC, Gueorguieva L, Rinas U, Seidel-Morgenstern A (2007) Step gradients in 3-zone simulated moving bed chromatography: application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A 1176(1):69–78 Keβler LC, Gueorguieva L, Rinas U, Seidel-Morgenstern A (2007) Step gradients in 3-zone simulated moving bed chromatography: application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A 1176(1):69–78
176.
Zurück zum Zitat Kröber T, Wolff MW, Hundt B, Seidel-Morgenstern A, Reichl U (2013) Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 1307:99–110 Kröber T, Wolff MW, Hundt B, Seidel-Morgenstern A, Reichl U (2013) Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 1307:99–110
177.
Zurück zum Zitat Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1):88–95 Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1):88–95
178.
Zurück zum Zitat Aniceto JP, Silva CM (2015) Simulated moving bed strategies and designs: from established systems to the latest developments. Sep Purif Rev 44(1):41–73 Aniceto JP, Silva CM (2015) Simulated moving bed strategies and designs: from established systems to the latest developments. Sep Purif Rev 44(1):41–73
179.
Zurück zum Zitat Mahajan E, George A, Wolk B (2012) Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A 1227:154–162 Mahajan E, George A, Wolk B (2012) Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A 1227:154–162
180.
Zurück zum Zitat Godawat R, Brower K, Jain S, Konstantinov K, Riske F, Warikoo V (2012) Periodic counter-current chromatography–design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7(12):1496–1508 Godawat R, Brower K, Jain S, Konstantinov K, Riske F, Warikoo V (2012) Periodic counter-current chromatography–design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7(12):1496–1508
181.
Zurück zum Zitat Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M (2015) Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A 1389:85–95 Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M (2015) Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A 1389:85–95
182.
Zurück zum Zitat Baur D, Angarita M, Müller-Späth T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J 11:920–931 Baur D, Angarita M, Müller-Späth T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J 11:920–931
183.
Zurück zum Zitat Girard V, Hilbold N-J, Ng CK, Pegon L, Chahim W, Rousset F, Monchois V (2015) Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up. J Biotechnol 213:65–73 Girard V, Hilbold N-J, Ng CK, Pegon L, Chahim W, Rousset F, Monchois V (2015) Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up. J Biotechnol 213:65–73
184.
Zurück zum Zitat Bisschops M (2014) BioSMB technology as an enabler for a fully continuous disposable biomanufacturing platform. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 35–52 Bisschops M (2014) BioSMB technology as an enabler for a fully continuous disposable biomanufacturing platform. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 35–52
185.
Zurück zum Zitat Grabski A, Mierendorf R (2009) Simulated moving bed chromatography. Genet Eng Biotechnol News 29(18):54–55 Grabski A, Mierendorf R (2009) Simulated moving bed chromatography. Genet Eng Biotechnol News 29(18):54–55
186.
Zurück zum Zitat Shinkazh O (2011) Countercurrent tangential chromatography methods, systems, and apparatus. US Patent 7,988,859 Shinkazh O (2011) Countercurrent tangential chromatography methods, systems, and apparatus. US Patent 7,988,859
187.
Zurück zum Zitat Dutta AK, Tan J, Napadensky B, Zydney AL, Shinkazh O (2016) Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnol Prog 32:430–439 Dutta AK, Tan J, Napadensky B, Zydney AL, Shinkazh O (2016) Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnol Prog 32:430–439
188.
Zurück zum Zitat Shinkazh O, Kanani D, Barth M, Long M, Hussain D, Zydney AL (2011) Countercurrent tangential chromatography for large-scale protein purification. Biotechnol Bioeng 108(3):582–591 Shinkazh O, Kanani D, Barth M, Long M, Hussain D, Zydney AL (2011) Countercurrent tangential chromatography for large-scale protein purification. Biotechnol Bioeng 108(3):582–591
189.
Zurück zum Zitat Napadensky B, Shinkazh O, Teella A, Zydney AL (2013) Continuous countercurrent tangential chromatography for monoclonal antibody purification. Sep Sci Technol 48(9):1289–1297 Napadensky B, Shinkazh O, Teella A, Zydney AL (2013) Continuous countercurrent tangential chromatography for monoclonal antibody purification. Sep Sci Technol 48(9):1289–1297
190.
Zurück zum Zitat Dutta AK, Tran T, Napadensky B, Teella A, Brookhart G, Ropp PA, Zhang AW, Tustian AD, Zydney AL, Shinkazh O (2015) Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography. J Biotechnol 213:54–64PubMedCentral Dutta AK, Tran T, Napadensky B, Teella A, Brookhart G, Ropp PA, Zhang AW, Tustian AD, Zydney AL, Shinkazh O (2015) Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography. J Biotechnol 213:54–64PubMedCentral
191.
Zurück zum Zitat Aumann L, Morbidelli M (2007) A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 98(5):1043–1055 Aumann L, Morbidelli M (2007) A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 98(5):1043–1055
192.
Zurück zum Zitat Müller-Späth T, Aumann L, Melter L, Ströhlein G, Morbidelli M (2008) Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 100(6):1166–1177 Müller-Späth T, Aumann L, Melter L, Ströhlein G, Morbidelli M (2008) Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 100(6):1166–1177
193.
Zurück zum Zitat Aumann L, Morbidelli M (2008) A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 99(3):728–733 Aumann L, Morbidelli M (2008) A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 99(3):728–733
194.
Zurück zum Zitat Müller-Späth T, Krättli M, Aumann L, Ströhlein G, Morbidelli M (2010) Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP). Biotechnol Bioeng 107(4):652–662 Müller-Späth T, Krättli M, Aumann L, Ströhlein G, Morbidelli M (2010) Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP). Biotechnol Bioeng 107(4):652–662
195.
Zurück zum Zitat Müller-Späth T, Aumann L, Ströhlein G, Kornmann H, Valax P, Delegrange L, Charbaut E, Baer G, Lamproye A, Jöhnck M (2010) Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 107(6):974–984 Müller-Späth T, Aumann L, Ströhlein G, Kornmann H, Valax P, Delegrange L, Charbaut E, Baer G, Lamproye A, Jöhnck M (2010) Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 107(6):974–984
196.
Zurück zum Zitat Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2(5):480–499 Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2(5):480–499
197.
Zurück zum Zitat Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part I. Clearance of minute virus of mice. Biotechnol Bioeng 110(2):491–499 Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part I. Clearance of minute virus of mice. Biotechnol Bioeng 110(2):491–499
198.
Zurück zum Zitat Boi C (2007) Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B 848(1):19–27 Boi C (2007) Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B 848(1):19–27
199.
Zurück zum Zitat Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3(9-10):1185–1200 Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3(9-10):1185–1200
200.
Zurück zum Zitat Etzel MR, Riordan WT (2009) Viral clearance using monoliths. J Chromatogr A 1216(13):2621–2624 Etzel MR, Riordan WT (2009) Viral clearance using monoliths. J Chromatogr A 1216(13):2621–2624
201.
Zurück zum Zitat Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2(2):195–212 Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2(2):195–212
202.
Zurück zum Zitat Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211 Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211
203.
Zurück zum Zitat Anspach FB, Curbelo D, Hartmann R, Garke G, Deckwer W-D (1999) Expanded-bed chromatography in primary protein purification. J Chromatogr A 865(1):129–144 Anspach FB, Curbelo D, Hartmann R, Garke G, Deckwer W-D (1999) Expanded-bed chromatography in primary protein purification. J Chromatogr A 865(1):129–144
204.
Zurück zum Zitat Chase HA (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol 12(8):296–303 Chase HA (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol 12(8):296–303
205.
Zurück zum Zitat Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70 Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70
206.
Zurück zum Zitat Thömmes J (1997) Fluidized bed adsorption as a primary recovery step in protein purification. In: Scheper T (ed) New enzymes for organic synthesis. Springer, Berlin, pp. 185–230 Thömmes J (1997) Fluidized bed adsorption as a primary recovery step in protein purification. In: Scheper T (ed) New enzymes for organic synthesis. Springer, Berlin, pp. 185–230
207.
Zurück zum Zitat Chhatre S, Francis R, O’Donovan K, Titchener-Hooker N, Newcombe A, Keshavarz-Moore E (2007) A decision-support model for evaluating changes in biopharmaceutical manufacturing processes. Bioprocess Biosyst Eng 30(1):1–11 Chhatre S, Francis R, O’Donovan K, Titchener-Hooker N, Newcombe A, Keshavarz-Moore E (2007) A decision-support model for evaluating changes in biopharmaceutical manufacturing processes. Bioprocess Biosyst Eng 30(1):1–11
208.
Zurück zum Zitat Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848(1):8–18 Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848(1):8–18
209.
Zurück zum Zitat Lin D-Q, Tong H-F, van de Sandt EJ, den Boer P, Golubović M, Yao S-J (2013) Evaluation and characterization of axial distribution in expanded bed. I. Bead size, bead density and local bed voidage. J Chromatogr A 1304:78–84 Lin D-Q, Tong H-F, van de Sandt EJ, den Boer P, Golubović M, Yao S-J (2013) Evaluation and characterization of axial distribution in expanded bed. I. Bead size, bead density and local bed voidage. J Chromatogr A 1304:78–84
210.
Zurück zum Zitat Zhao J, Yao S, Lin D (2009) Adsorbents for expanded bed adsorption: preparation and functionalization. Chin J Chem Eng 17(4):678–687 Zhao J, Yao S, Lin D (2009) Adsorbents for expanded bed adsorption: preparation and functionalization. Chin J Chem Eng 17(4):678–687
211.
Zurück zum Zitat Feuser J, Halfar M, Lütkemeyer D, Ameskamp N, Kula M-R, Thömmes J (1999) Interaction of mammalian cell culture broth with adsorbents in expanded bed adsorption of monoclonal antibodies. Process Biochem 34(2):159–165 Feuser J, Halfar M, Lütkemeyer D, Ameskamp N, Kula M-R, Thömmes J (1999) Interaction of mammalian cell culture broth with adsorbents in expanded bed adsorption of monoclonal antibodies. Process Biochem 34(2):159–165
212.
Zurück zum Zitat Özyurt S, Kirdar B, Ülgen KÖ (2002) Recovery of antithrombin III from milk by expanded bed chromatography. J Chromatogr A 944(1):203–210 Özyurt S, Kirdar B, Ülgen KÖ (2002) Recovery of antithrombin III from milk by expanded bed chromatography. J Chromatogr A 944(1):203–210
213.
Zurück zum Zitat Smith M, Bulmer M, Hjorth R, Titchener-Hooker N (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J Chromatogr A 968(1):121–128 Smith M, Bulmer M, Hjorth R, Titchener-Hooker N (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J Chromatogr A 968(1):121–128
214.
Zurück zum Zitat Owen RO, Chase HA (1997) Direct purification of lysozyme using continuous counter-current expanded bed adsorption. J Chromatogr A 757(1):41–49 Owen RO, Chase HA (1997) Direct purification of lysozyme using continuous counter-current expanded bed adsorption. J Chromatogr A 757(1):41–49
215.
Zurück zum Zitat Owen RO, Chase HA (1999) Modeling of the continuous counter-current expanded bed adsorber for the purification of proteins. Chem Eng Sci 54(17):3765–3781 Owen RO, Chase HA (1999) Modeling of the continuous counter-current expanded bed adsorber for the purification of proteins. Chem Eng Sci 54(17):3765–3781
216.
Zurück zum Zitat McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. mAbs 7(2):413–427 McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. mAbs 7(2):413–427
217.
Zurück zum Zitat Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495 Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495
218.
Zurück zum Zitat Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109(10):2589–2598 Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109(10):2589–2598
219.
Zurück zum Zitat Ito Y, Qi L (2010) Centrifugal precipitation chromatography. J Chromatogr B 878(2):154–164 Ito Y, Qi L (2010) Centrifugal precipitation chromatography. J Chromatogr B 878(2):154–164
220.
Zurück zum Zitat Lydersen BK, Brehm-Gibson T, Murel A (1994) Acid precipitation of mammalian cell fermentation broth. Ann N Y Acad Sci 745(1):222–231 Lydersen BK, Brehm-Gibson T, Murel A (1994) Acid precipitation of mammalian cell fermentation broth. Ann N Y Acad Sci 745(1):222–231
221.
Zurück zum Zitat Sommer R, Satzer P, Tscheliessnig A, Schulz H, Helk B, Jungbauer A (2014) Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem 49(11):2001–2009 Sommer R, Satzer P, Tscheliessnig A, Schulz H, Helk B, Jungbauer A (2014) Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem 49(11):2001–2009
222.
Zurück zum Zitat Tscheliessnig A, Satzer P, Hammerschmidt N, Schulz H, Helk B, Jungbauer A (2014) Ethanol precipitation for purification of recombinant antibodies. J Biotechnol 188:17–28 Tscheliessnig A, Satzer P, Hammerschmidt N, Schulz H, Helk B, Jungbauer A (2014) Ethanol precipitation for purification of recombinant antibodies. J Biotechnol 188:17–28
223.
Zurück zum Zitat Kang YK, Hamzik J, Felo M, Qi B, Lee J, Ng S, Liebisch G, Shanehsaz B, Singh N, Persaud K (2013) Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng 110(11):2928–2937 Kang YK, Hamzik J, Felo M, Qi B, Lee J, Ng S, Liebisch G, Shanehsaz B, Singh N, Persaud K (2013) Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng 110(11):2928–2937
224.
Zurück zum Zitat Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128(4):813–823 Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128(4):813–823
225.
Zurück zum Zitat Singh N, Arunkumar A, Chollangi S, Tan ZG, Borys M, Li ZJ (2015) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113(4):698–716 Singh N, Arunkumar A, Chollangi S, Tan ZG, Borys M, Li ZJ (2015) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113(4):698–716
226.
Zurück zum Zitat Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma–aspects of yield and virus safety. Biotechnol J 1(2):148–163 Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma–aspects of yield and virus safety. Biotechnol J 1(2):148–163
227.
Zurück zum Zitat Bell D, Hoare M, Dunnill P (1983) The formation of protein precipitates and their centrifugal recovery. In: Downstream processing. Springer, pp 1–72 Bell D, Hoare M, Dunnill P (1983) The formation of protein precipitates and their centrifugal recovery. In: Downstream processing. Springer, pp 1–72
228.
Zurück zum Zitat Watt J (1970) Automatically controlled continuous recovery of plasma protein fractions for clinical use: a preliminary report. Vox Sang 18(1):42–61 Watt J (1970) Automatically controlled continuous recovery of plasma protein fractions for clinical use: a preliminary report. Vox Sang 18(1):42–61
229.
Zurück zum Zitat Chang CE (1988) Continuous fractionation of human plasma proteins by precipitation from the suspension of the recycling stream. Biotechnol Bioeng 31(8):841–846 Chang CE (1988) Continuous fractionation of human plasma proteins by precipitation from the suspension of the recycling stream. Biotechnol Bioeng 31(8):841–846
230.
Zurück zum Zitat Hammerschmidt N, Hintersteiner B, Lingg N, Jungbauer A (2015) Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor. Biotechnol J 10(8):1196–1205 Hammerschmidt N, Hintersteiner B, Lingg N, Jungbauer A (2015) Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor. Biotechnol J 10(8):1196–1205
231.
Zurück zum Zitat Hammerschmidt N, Hobiger S, Jungbauer A (2016) Continuous polyethylene glycol precipitation of recombinant antibodies: sequential precipitation and resolubilization. Process Biochem 51(2):325–332 Hammerschmidt N, Hobiger S, Jungbauer A (2016) Continuous polyethylene glycol precipitation of recombinant antibodies: sequential precipitation and resolubilization. Process Biochem 51(2):325–332
232.
Zurück zum Zitat Warikoo V, Godawat R (2015) A new use for existing technology–continuous precipitation for purification of recombination proteins. Biotechnol J 10(8):1101–1102 Warikoo V, Godawat R (2015) A new use for existing technology–continuous precipitation for purification of recombination proteins. Biotechnol J 10(8):1101–1102
233.
Zurück zum Zitat Azevedo AM, Gomes AG, Rosa PA, Ferreira IF, Pisco AM, Aires-Barros MR (2009) Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep Purif Technol 65(1):14–21 Azevedo AM, Gomes AG, Rosa PA, Ferreira IF, Pisco AM, Aires-Barros MR (2009) Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep Purif Technol 65(1):14–21
234.
Zurück zum Zitat Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Sep Purif Technol 65(1):22–30 Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Sep Purif Technol 65(1):22–30
235.
Zurück zum Zitat Haraguchi L, Mohamed R, Loh W, Pessôa Filho P (2004) Phase equilibrium and insulin partitioning in aqueous two-phase systems containing block copolymers and potassium phosphate. Fluid Phase Equilibria 215(1):1–15 Haraguchi L, Mohamed R, Loh W, Pessôa Filho P (2004) Phase equilibrium and insulin partitioning in aqueous two-phase systems containing block copolymers and potassium phosphate. Fluid Phase Equilibria 215(1):1–15
236.
Zurück zum Zitat Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S (2001) Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers. Biotechnol Bioeng 75(5):570–580 Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S (2001) Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers. Biotechnol Bioeng 75(5):570–580
237.
Zurück zum Zitat Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT (2009) Concentration of mammalian genomic DNA using two-phase aqueous micellar systems. Biotechnol Bioeng 102(6):1613–1623 Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT (2009) Concentration of mammalian genomic DNA using two-phase aqueous micellar systems. Biotechnol Bioeng 102(6):1613–1623
238.
Zurück zum Zitat Rosa PA, Ferreira I, Azevedo A, Aires-Barros M (2010) Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 1217(16):2296–2305 Rosa PA, Ferreira I, Azevedo A, Aires-Barros M (2010) Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 1217(16):2296–2305
239.
Zurück zum Zitat Hart RA, Lester PM, Reifsnyder DH, Ogez JR, Builder SE (1994) Large scale, in situ isolation of periplasmic IGF–I from E. coli. Nat Biotechnol 12(11):1113–1117 Hart RA, Lester PM, Reifsnyder DH, Ogez JR, Builder SE (1994) Large scale, in situ isolation of periplasmic IGF–I from E. coli. Nat Biotechnol 12(11):1113–1117
240.
Zurück zum Zitat Azevedo AM, Rosa PA, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247 Azevedo AM, Rosa PA, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247
241.
Zurück zum Zitat Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M (2012) Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A 1244:1–13 Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M (2012) Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A 1244:1–13
242.
Zurück zum Zitat Kula MR, Selber K (2002) Protein purification, aqueous liquid extraction. Encyclopedia of Bioprocess Technology Kula MR, Selber K (2002) Protein purification, aqueous liquid extraction. Encyclopedia of Bioprocess Technology
243.
Zurück zum Zitat Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2015) Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 141:263–268 Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2015) Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 141:263–268
244.
Zurück zum Zitat Espitia-Saloma E, Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2014) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process 92(2):101–112 Espitia-Saloma E, Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2014) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process 92(2):101–112
245.
Zurück zum Zitat Muendges J, Zalesko A, Górak A, Zeiner T (2015) Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 31(4):925–936 Muendges J, Zalesko A, Górak A, Zeiner T (2015) Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 31(4):925–936
246.
Zurück zum Zitat Rosa PA, Azevedo A, Sommerfeld S, Bäcker W, Aires-Barros M (2012) Continuous aqueous two-phase extraction of human antibodies using a packed column. J Chromatogr B 880:148–156 Rosa PA, Azevedo A, Sommerfeld S, Bäcker W, Aires-Barros M (2012) Continuous aqueous two-phase extraction of human antibodies using a packed column. J Chromatogr B 880:148–156
247.
Zurück zum Zitat Espitia-Saloma E, Vâzquez-Villegas P, Rito-Palomares M, Aguilar O (2016) An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: from the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 11(5):708–716 Espitia-Saloma E, Vâzquez-Villegas P, Rito-Palomares M, Aguilar O (2016) An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: from the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 11(5):708–716
248.
Zurück zum Zitat Rosa PA, Azevedo A, Sommerfeld S, Mutter M, Aires-Barros M, Bäcker W (2009) Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J Biotechnol 139(4):306–313 Rosa PA, Azevedo A, Sommerfeld S, Mutter M, Aires-Barros M, Bäcker W (2009) Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J Biotechnol 139(4):306–313
249.
Zurück zum Zitat Eggersgluess JK, Richter M, Dieterle M, Strube J (2014) Multi-stage aqueous two-phase extraction for the purification of monoclonal antibodies. Chem Eng Technol 37(4):675–682 Eggersgluess JK, Richter M, Dieterle M, Strube J (2014) Multi-stage aqueous two-phase extraction for the purification of monoclonal antibodies. Chem Eng Technol 37(4):675–682
250.
Zurück zum Zitat Rosa PA, Azevedo AM, Sommerfeld S, Mutter M, Bäcker W, Aires-Barros MR (2013) Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: from concept to process. Biotechnol J 8(3):352–362 Rosa PA, Azevedo AM, Sommerfeld S, Mutter M, Bäcker W, Aires-Barros MR (2013) Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: from concept to process. Biotechnol J 8(3):352–362
251.
Zurück zum Zitat de los Reyes G, Mir L (2008) Method and apparatus for the filtration of biological solutions. US Patent 7,384,549 de los Reyes G, Mir L (2008) Method and apparatus for the filtration of biological solutions. US Patent 7,384,549
252.
Zurück zum Zitat Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384(1):82–88 Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384(1):82–88
253.
Zurück zum Zitat Dizon-Maspat J, Bourret J, D'Agostini A, Li F (2012) Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol Bioeng 109(4):962–970 Dizon-Maspat J, Bourret J, D'Agostini A, Li F (2012) Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol Bioeng 109(4):962–970
254.
Zurück zum Zitat Teske CA, Lebreton B, van Reis R (2010) Inline ultrafiltration. Biotechnol Prog 26(4):1068–1072 Teske CA, Lebreton B, van Reis R (2010) Inline ultrafiltration. Biotechnol Prog 26(4):1068–1072
255.
Zurück zum Zitat Peeva L, da Silva BJ, Valtcheva I, Livingston AG (2014) Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem Eng Sci 116:183–194 Peeva L, da Silva BJ, Valtcheva I, Livingston AG (2014) Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem Eng Sci 116:183–194
256.
Zurück zum Zitat Lightfoot EN (2005) Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Sep Sci Technol 40(4):739–756 Lightfoot EN (2005) Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Sep Sci Technol 40(4):739–756
257.
Zurück zum Zitat Mayani M, Filipe CD, Ghosh R (2010) Cascade ultrafiltration systems—integrated processes for purification and concentration of lysozyme. J Membr Sci 347(1):150–158 Mayani M, Filipe CD, Ghosh R (2010) Cascade ultrafiltration systems—integrated processes for purification and concentration of lysozyme. J Membr Sci 347(1):150–158
258.
Zurück zum Zitat Mohanty K, Ghosh R (2008) Novel tangential-flow countercurrent cascade ultrafiltration configuration for continuous purification of humanized monoclonal antibody. J Membr Sci 307(1):117–125 Mohanty K, Ghosh R (2008) Novel tangential-flow countercurrent cascade ultrafiltration configuration for continuous purification of humanized monoclonal antibody. J Membr Sci 307(1):117–125
259.
Zurück zum Zitat Lightfoot EN, Root TW, O’Dell JL (2008) Emergence of ideal membrane cascades for downstream processing. Biotechnol Prog 24(3):599–605 Lightfoot EN, Root TW, O’Dell JL (2008) Emergence of ideal membrane cascades for downstream processing. Biotechnol Prog 24(3):599–605
260.
Zurück zum Zitat Siew WE, Livingston AG, Ates C, Merschaert A (2013) Molecular separation with an organic solvent nanofiltration cascade–augmenting membrane selectivity with process engineering. Chem Eng Sci 90:299–310 Siew WE, Livingston AG, Ates C, Merschaert A (2013) Molecular separation with an organic solvent nanofiltration cascade–augmenting membrane selectivity with process engineering. Chem Eng Sci 90:299–310
261.
Zurück zum Zitat Kurnik RT, Yu AW, Blank GS, Burton AR, Smith D, Athalye AM, van Reis R (1995) Buffer exchange using size exclusion chromatography, countercurrent dialysis, and tangential flow filtration: models, development, and industrial application. Biotechnol Bioeng 45(2):149–157 Kurnik RT, Yu AW, Blank GS, Burton AR, Smith D, Athalye AM, van Reis R (1995) Buffer exchange using size exclusion chromatography, countercurrent dialysis, and tangential flow filtration: models, development, and industrial application. Biotechnol Bioeng 45(2):149–157
262.
Zurück zum Zitat Schwan P, Lenz L-P, Baumarth K, Lobedann M (2015) Ultrafiltration unit for continuous buffer or media exchange from a protein solution. WIPO Patent WO2015121403 Schwan P, Lenz L-P, Baumarth K, Lobedann M (2015) Ultrafiltration unit for continuous buffer or media exchange from a protein solution. WIPO Patent WO2015121403
263.
Zurück zum Zitat De Meyer L, Van Bockstal P-J, Corver J, Vervaet C, Remon J, De Beer T (2015) Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses. Int J Pharm 496(1):75–85 De Meyer L, Van Bockstal P-J, Corver J, Vervaet C, Remon J, De Beer T (2015) Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses. Int J Pharm 496(1):75–85
264.
Zurück zum Zitat Weisselberg E (2013) Apparatus and method for continuous lyophilization. US Patent 8,528,225 Weisselberg E (2013) Apparatus and method for continuous lyophilization. US Patent 8,528,225
265.
Zurück zum Zitat Rey L (2010) Glimpses into the realm of freeze-drying: classical issues and new ventures. In: Rey L, May JC (eds) Freeze drying/lyophilization of pharmaceutical and biological products. Informa Healthcare, London, pp. 1–28 Rey L (2010) Glimpses into the realm of freeze-drying: classical issues and new ventures. In: Rey L, May JC (eds) Freeze drying/lyophilization of pharmaceutical and biological products. Informa Healthcare, London, pp. 1–28
266.
Zurück zum Zitat Peters J, Minuth T, Schröder W (2005) Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif 39(1):43–53 Peters J, Minuth T, Schröder W (2005) Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif 39(1):43–53
267.
Zurück zum Zitat Schmidt S, Havekost D, Kaiser K, Kauling J, Henzler HJ (2005) Crystallization for the downstream processing of proteins. Eng Life Sci 5(3):273–276 Schmidt S, Havekost D, Kaiser K, Kauling J, Henzler HJ (2005) Crystallization for the downstream processing of proteins. Eng Life Sci 5(3):273–276
268.
Zurück zum Zitat Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38(7):1209–1231 Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38(7):1209–1231
269.
Zurück zum Zitat Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57(6):666–675 Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57(6):666–675
270.
Zurück zum Zitat Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48(4):316–323 Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48(4):316–323
271.
Zurück zum Zitat Zang Y, Kammerer B, Eisenkolb M, Lohr K, Kiefer H (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6(9):e25282PubMedCentral Zang Y, Kammerer B, Eisenkolb M, Lohr K, Kiefer H (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6(9):e25282PubMedCentral
272.
Zurück zum Zitat Baker JC, Roberts BM (1997) Preparation of stable insulin analog crystals. US Patent US5597893 A Baker JC, Roberts BM (1997) Preparation of stable insulin analog crystals. US Patent US5597893 A
273.
Zurück zum Zitat Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100(12):6934–6939PubMedCentral Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100(12):6934–6939PubMedCentral
274.
Zurück zum Zitat Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4(3):301–317 Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4(3):301–317
275.
Zurück zum Zitat Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B (2015) Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci 133:125–139 Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B (2015) Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci 133:125–139
276.
Zurück zum Zitat Su Q, Nagy ZK, Rielly CD (2015) Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control. Chem Eng Process 89:41–53 Su Q, Nagy ZK, Rielly CD (2015) Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control. Chem Eng Process 89:41–53
277.
Zurück zum Zitat Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni X-W (2009) Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 13(6):1357–1363 Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni X-W (2009) Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 13(6):1357–1363
278.
Zurück zum Zitat Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12(11):5701–5707 Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12(11):5701–5707
279.
Zurück zum Zitat Li J, Trout BL, Myerson AS (2015) Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev 20(2):510–516 Li J, Trout BL, Myerson AS (2015) Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev 20(2):510–516
280.
Zurück zum Zitat Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans J, Jamison TF (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52(47):12359–12363 Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans J, Jamison TF (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52(47):12359–12363
281.
Zurück zum Zitat Poechlauer P, Manley J, Broxterman R, Br G, Ridemark M (2012) Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: an industry perspective. Org Process Res Dev 16(10):1586–1590 Poechlauer P, Manley J, Broxterman R, Br G, Ridemark M (2012) Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: an industry perspective. Org Process Res Dev 16(10):1586–1590
282.
Zurück zum Zitat Neugebauer P, Khinast JG (2015) Continuous crystallization of proteins in a tubular plug-flow crystallizer. Cryst Growth Des 15(3):1089–1095PubMedCentral Neugebauer P, Khinast JG (2015) Continuous crystallization of proteins in a tubular plug-flow crystallizer. Cryst Growth Des 15(3):1089–1095PubMedCentral
283.
Zurück zum Zitat Burnouf T, Radosevich M (2003) Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 9(1):24–37 Burnouf T, Radosevich M (2003) Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 9(1):24–37
284.
Zurück zum Zitat Lute S, Riordan W, Pease LF, Tsai D-H, Levy R, Haque M, Martin J, Moroe I, Sato T, Morgan M (2008) A consensus rating method for small virus-retentive filters. I Method development. PDA J Pharm Sci Technol 62(5):318–333 Lute S, Riordan W, Pease LF, Tsai D-H, Levy R, Haque M, Martin J, Moroe I, Sato T, Morgan M (2008) A consensus rating method for small virus-retentive filters. I Method development. PDA J Pharm Sci Technol 62(5):318–333
285.
Zurück zum Zitat Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process 102:88–101 Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process 102:88–101
286.
Zurück zum Zitat Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82(3):321–329 Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82(3):321–329
287.
Zurück zum Zitat U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research (1998) Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin, Rockville U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research (1998) Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin, Rockville
288.
Zurück zum Zitat Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B 848(1):28–39 Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B 848(1):28–39
289.
Zurück zum Zitat Klutz S, Kurt SK, Lobedann M, Kockmann N (2015) Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem Eng Res Des 95:22–33 Klutz S, Kurt SK, Lobedann M, Kockmann N (2015) Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem Eng Res Des 95:22–33
290.
Zurück zum Zitat Caillet-Fauquet P, Di Giambattista M, Draps M-L, Sandras F, Branckaert T, De Launoit Y, Laub R (2004) Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. J Virol Methods 118(2):131–139 Caillet-Fauquet P, Di Giambattista M, Draps M-L, Sandras F, Branckaert T, De Launoit Y, Laub R (2004) Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. J Virol Methods 118(2):131–139
291.
Zurück zum Zitat Lorenz CM, Wolk BM, Quan CP, Alcala EW, Eng M, McDonald DJ, Matthews TC (2009) The effect of low intensity ultraviolet-C light on monoclonal antibodies. Biotechnol Prog 25(2):476–482 Lorenz CM, Wolk BM, Quan CP, Alcala EW, Eng M, McDonald DJ, Matthews TC (2009) The effect of low intensity ultraviolet-C light on monoclonal antibodies. Biotechnol Prog 25(2):476–482
292.
Zurück zum Zitat Gunn A, Cameron ID, Pepper DS, MacDonald SL, Li Q (2003) Device for treatment of biological fluids. U.S. Patent 6,586,172 Gunn A, Cameron ID, Pepper DS, MacDonald SL, Li Q (2003) Device for treatment of biological fluids. U.S. Patent 6,586,172
293.
Zurück zum Zitat Kaiser K, Henzler H-J, Kauling J, Treckmann R, Remington K, Galloway C (2002) Method of inactivating microorganisms in a fluid using ultraviolet radiation. US Patent 7,695,675 Kaiser K, Henzler H-J, Kauling J, Treckmann R, Remington K, Galloway C (2002) Method of inactivating microorganisms in a fluid using ultraviolet radiation. US Patent 7,695,675
294.
Zurück zum Zitat Bae JE, Jeong EK, Lee JI, Lee J-I, Kim IS, Kum J (2009) Evaluation of viral inactivation efficacy of a continuous flow ultraviolet-C reactor (UVivatec). Kor J Microbiol Biotechnol 4:377–382 Bae JE, Jeong EK, Lee JI, Lee J-I, Kim IS, Kum J (2009) Evaluation of viral inactivation efficacy of a continuous flow ultraviolet-C reactor (UVivatec). Kor J Microbiol Biotechnol 4:377–382
295.
Zurück zum Zitat Li Q, MacDonald S, Bienek C, Foster PR, MacLeod AJ (2005) Design of a UV-C irradiation process for the inactivation of viruses in protein solutions. Biologicals 33(2):101–110 Li Q, MacDonald S, Bienek C, Foster PR, MacLeod AJ (2005) Design of a UV-C irradiation process for the inactivation of viruses in protein solutions. Biologicals 33(2):101–110
296.
Zurück zum Zitat Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J (2004) Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 86(4):230–238 Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J (2004) Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 86(4):230–238
Metadaten
Titel
Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies
verfasst von
Rohan Patil
Jason Walther
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/10_2016_58

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.