Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Continuous Space Coverage

verfasst von : Richard L. Church, Alan Murray

Erschienen in: Location Covering Models

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An important distinction in location analysis and modeling has long been discrete versus continuous approaches. In previous chapters, for the most part, the reviewed coverage problems have been discrete in the sense that the places at which a facility may be sited are known and finite in number, and the demand locations to be served are also known and finite. This has enabled discrete integer programming formulations of models to be developed, allowing for efficient and exact solution in many cases. In some circumstances, however, neither potential facility sites nor demand locations are necessarily known and finite. Thus, one aspect of a continuous space location model is that facilities may be sited anywhere. An example is depicted in Fig. 8.1 where all locations within the region are feasible. The implication is that there are an infinite number of potential facility locations to be considered, in contrast to an assumed finite set of potential locations in discrete approaches (see Chap. 2). Another aspect of a continuous space problem is that demand too is not limited to a finite set of locations. Rather, demand is assumed to be continuously distributed across geographic space, varying over a study area. One example of this is shown in Fig. 8.2, where the height of the surface reflects demand for service. As is evident in the figure, some level of demand can be observed everywhere and this varies across space. Another example is given in Fig. 8.3. The Census unit color reflects the amount of demand in each area. Within a unit the demand varies in some manner, but given limited knowledge, a small geographic area and relative homogeneity, it is often thought that demand is uniformly distributed in the unit. Thus, Fig. 8.3 reflects discontinuities in demand variability, but it remains varying across space. Irrespective of representation, the implication is that demand for service is everywhere, and in some cases can possibly be defined/described by a mathematical function. From a practical standpoint, the study area could be a demand region, collection of areal units, set of line segments, or any group of spatial objects. This clearly makes dealing with demand and its geographic variability particularly challenging, especially when compared to a discrete representation view based on points. This contrasting view can be observed in Fig. 8.4 as centroids for each Census unit are identified, and demand is assumed to occur at these precise points in traditional modeling approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aly AA, White JA (1978) Probabilistic formulation of the emergency service location problem. J Oper Res Soc 29:1167–1179CrossRef Aly AA, White JA (1978) Probabilistic formulation of the emergency service location problem. J Oper Res Soc 29:1167–1179CrossRef
Zurück zum Zitat Alexandris G, Giannikos I (2010) A new model for maximal coverage exploiting GIS capabilities. Eur J Oper Res 202:328–338CrossRef Alexandris G, Giannikos I (2010) A new model for maximal coverage exploiting GIS capabilities. Eur J Oper Res 202:328–338CrossRef
Zurück zum Zitat Benveniste R (1982) A note on the set covering problem. J Oper Res Soc 33:261–265CrossRef Benveniste R (1982) A note on the set covering problem. J Oper Res Soc 33:261–265CrossRef
Zurück zum Zitat Berman O, Verter V, Kara BY (2007) Designing emergency response networks for hazardous materials transportation. Comput Oper Res 34:1374–1388CrossRef Berman O, Verter V, Kara BY (2007) Designing emergency response networks for hazardous materials transportation. Comput Oper Res 34:1374–1388CrossRef
Zurück zum Zitat Berman O, Wang J (2011) The minmax regret gradual covering location problem on a network with incomplete information of demand weights. Eur J Oper Res 208(3):233–238CrossRef Berman O, Wang J (2011) The minmax regret gradual covering location problem on a network with incomplete information of demand weights. Eur J Oper Res 208(3):233–238CrossRef
Zurück zum Zitat Brady SD, Rosenthal RE (1980) Interactive computer graphical solutions of constrained minimax location problems. AIIE Trans 12(3):241–248CrossRef Brady SD, Rosenthal RE (1980) Interactive computer graphical solutions of constrained minimax location problems. AIIE Trans 12(3):241–248CrossRef
Zurück zum Zitat Brady SD, Rosenthal RE, Young D (1983) Interactive graphical minimax location of multiple facilities with general constraints. AIIE Trans 15(3):242–254 Brady SD, Rosenthal RE, Young D (1983) Interactive graphical minimax location of multiple facilities with general constraints. AIIE Trans 15(3):242–254
Zurück zum Zitat Capar I, Kuby M, Leon VJ, Tsai YJ (2013) An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations. Eur J Oper Res 227:142–151CrossRef Capar I, Kuby M, Leon VJ, Tsai YJ (2013) An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations. Eur J Oper Res 227:142–151CrossRef
Zurück zum Zitat Church RL (1984) The planar maximal covering location problem. J Reg Sci 24:185–201CrossRef Church RL (1984) The planar maximal covering location problem. J Reg Sci 24:185–201CrossRef
Zurück zum Zitat Church RL, Meadows ME (1979) Location modeling utilizing maximum service distance criteria. Geogr Anal 11:358–373CrossRef Church RL, Meadows ME (1979) Location modeling utilizing maximum service distance criteria. Geogr Anal 11:358–373CrossRef
Zurück zum Zitat Church RL, Revelle C (1974) The maximal covering location problem. Pap Reg Sci 32:101–118CrossRef Church RL, Revelle C (1974) The maximal covering location problem. Pap Reg Sci 32:101–118CrossRef
Zurück zum Zitat Cromley RG, Lin J, Merwin DA (2012) Evaluating representation and scale error in the maximal covering location problem using GIS and intelligent areal interpolation. Int J Geogr Inf Sci 26(3):495–517CrossRef Cromley RG, Lin J, Merwin DA (2012) Evaluating representation and scale error in the maximal covering location problem using GIS and intelligent areal interpolation. Int J Geogr Inf Sci 26(3):495–517CrossRef
Zurück zum Zitat Current J, Schilling D (1990) Analysis of errors due to demand data aggregation in the set covering and maximal covering location problems. Geogr Anal 22:116–126CrossRef Current J, Schilling D (1990) Analysis of errors due to demand data aggregation in the set covering and maximal covering location problems. Geogr Anal 22:116–126CrossRef
Zurück zum Zitat Daskin MS, Haghani AE, Khanal M, Malandraki C (1989) Aggregation effects in maximal covering models. Ann Oper Res 18:115–140CrossRef Daskin MS, Haghani AE, Khanal M, Malandraki C (1989) Aggregation effects in maximal covering models. Ann Oper Res 18:115–140CrossRef
Zurück zum Zitat Elzinga J, Hearn DW (1972) Geometrical solutions for some minimax location problems. Transp Sci 6(4):379–394CrossRef Elzinga J, Hearn DW (1972) Geometrical solutions for some minimax location problems. Transp Sci 6(4):379–394CrossRef
Zurück zum Zitat Erdemir ET, Batta R, Rogerson PA, Blatt A, Flanigan M (2010) Joint ground and air emergency medical services coverage models: a greedy heuristic solution approach. Eur J Oper Res 207:736–749CrossRef Erdemir ET, Batta R, Rogerson PA, Blatt A, Flanigan M (2010) Joint ground and air emergency medical services coverage models: a greedy heuristic solution approach. Eur J Oper Res 207:736–749CrossRef
Zurück zum Zitat Erdemir ET, Batta R, Spielman S, Rogerson PA, Blatt A, Flanigan M (2008) Location coverage models with demand originating from nodes and paths: application to cellular network design. Eur J Oper Res 190:610–632CrossRef Erdemir ET, Batta R, Spielman S, Rogerson PA, Blatt A, Flanigan M (2008) Location coverage models with demand originating from nodes and paths: application to cellular network design. Eur J Oper Res 190:610–632CrossRef
Zurück zum Zitat Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach. Pearson College Division, New York Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach. Pearson College Division, New York
Zurück zum Zitat Goodchild MF, Lee J (1989) Coverage problems and visibility regions on topographic surfaces. Ann Oper Res 18(1):175–186CrossRef Goodchild MF, Lee J (1989) Coverage problems and visibility regions on topographic surfaces. Ann Oper Res 18(1):175–186CrossRef
Zurück zum Zitat Grubesic TH, Murray AT, Matisziw TC (2013) Putting a price on politics as usual: rural air transport in the United States. Transp Policy 30:117–124CrossRef Grubesic TH, Murray AT, Matisziw TC (2013) Putting a price on politics as usual: rural air transport in the United States. Transp Policy 30:117–124CrossRef
Zurück zum Zitat Hodgson MJ (1990) A flow-capturing location-allocation model. Geogr Anal 22:270–279CrossRef Hodgson MJ (1990) A flow-capturing location-allocation model. Geogr Anal 22:270–279CrossRef
Zurück zum Zitat Kershner R (1939) The number of circles covering a set. Am J Math 61:665–671CrossRef Kershner R (1939) The number of circles covering a set. Am J Math 61:665–671CrossRef
Zurück zum Zitat Kim K, Murray AT (2008) Enhancing spatial representation in primary and secondary coverage location modeling. J Reg Sci 48:745–768CrossRef Kim K, Murray AT (2008) Enhancing spatial representation in primary and secondary coverage location modeling. J Reg Sci 48:745–768CrossRef
Zurück zum Zitat Kuby M, Lim S (2005) The flow-refueling location problem for alternative-fuel vehicles. Socio Econ Plan Sci 39:125–145CrossRef Kuby M, Lim S (2005) The flow-refueling location problem for alternative-fuel vehicles. Socio Econ Plan Sci 39:125–145CrossRef
Zurück zum Zitat Matisziw TC, Murray AT (2009a) Siting a facility in continuous space to maximize coverage of continuously distributed demand. Socio Econ Plan Sci 43:131–139CrossRef Matisziw TC, Murray AT (2009a) Siting a facility in continuous space to maximize coverage of continuously distributed demand. Socio Econ Plan Sci 43:131–139CrossRef
Zurück zum Zitat Matisziw TC, Murray AT (2009b) Area coverage maximization in service facility siting. J Geogr Syst 11:175–189CrossRef Matisziw TC, Murray AT (2009b) Area coverage maximization in service facility siting. J Geogr Syst 11:175–189CrossRef
Zurück zum Zitat Mehrez A, Stulman A (1982) The maximal covering location problem with facility placement on the entire plane. J Reg Sci 22:361–365CrossRef Mehrez A, Stulman A (1982) The maximal covering location problem with facility placement on the entire plane. J Reg Sci 22:361–365CrossRef
Zurück zum Zitat Mehrez A, Stulman A (1984) An extended continuous maximal covering location problem with facility placement. Comput Oper Res 11:19–23CrossRef Mehrez A, Stulman A (1984) An extended continuous maximal covering location problem with facility placement. Comput Oper Res 11:19–23CrossRef
Zurück zum Zitat Murray AT (2005) Geography in coverage modeling: exploiting spatial structure to address complementary partial service of areas. Ann Assoc Am Geogr 95:761–772CrossRef Murray AT (2005) Geography in coverage modeling: exploiting spatial structure to address complementary partial service of areas. Ann Assoc Am Geogr 95:761–772CrossRef
Zurück zum Zitat Murray AT, Matisziw TC, Wei H, Tong D (2008b) A GeoComputational heuristic for coverage maximization in service facility siting. Trans GIS 12:757–773CrossRef Murray AT, Matisziw TC, Wei H, Tong D (2008b) A GeoComputational heuristic for coverage maximization in service facility siting. Trans GIS 12:757–773CrossRef
Zurück zum Zitat Murray AT, O’Kelly ME (2002) Assessing representation error in point-based coverage modeling. J Geogr Syst 4:171–191CrossRef Murray AT, O’Kelly ME (2002) Assessing representation error in point-based coverage modeling. J Geogr Syst 4:171–191CrossRef
Zurück zum Zitat Murray AT, O’Kelly ME, Church RL (2008a) Regional service coverage modeling. Comput Oper Res 35:339–355CrossRef Murray AT, O’Kelly ME, Church RL (2008a) Regional service coverage modeling. Comput Oper Res 35:339–355CrossRef
Zurück zum Zitat Murray AT, Tong D (2007) Coverage optimization in continuous space facility siting. Int J Geogr Inf Sci 21:757–776CrossRef Murray AT, Tong D (2007) Coverage optimization in continuous space facility siting. Int J Geogr Inf Sci 21:757–776CrossRef
Zurück zum Zitat Murray AT, Tong D, Kim K (2010) Enhancing classic coverage location models. Int Reg Sci Rev 33:115–133CrossRef Murray AT, Tong D, Kim K (2010) Enhancing classic coverage location models. Int Reg Sci Rev 33:115–133CrossRef
Zurück zum Zitat Murray AT, Wei R (2013) A computational approach for eliminating error in the solution of the location set covering problem. Eur J Oper Res 224:52–64CrossRef Murray AT, Wei R (2013) A computational approach for eliminating error in the solution of the location set covering problem. Eur J Oper Res 224:52–64CrossRef
Zurück zum Zitat Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 37–79CrossRef Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 37–79CrossRef
Zurück zum Zitat Poetranto DR, Hamacher HW, Horn S, Schöbel A (2009) Stop location design in public transportation networks: covering and accessibility objectives. TOP 17:335–346CrossRef Poetranto DR, Hamacher HW, Horn S, Schöbel A (2009) Stop location design in public transportation networks: covering and accessibility objectives. TOP 17:335–346CrossRef
Zurück zum Zitat ReVelle CS, Toregas C, Falkson L (1976) Applications of the location set covering problem. Geogr Anal 8:65–76CrossRef ReVelle CS, Toregas C, Falkson L (1976) Applications of the location set covering problem. Geogr Anal 8:65–76CrossRef
Zurück zum Zitat Schobel A, Hamacher HW, Liebers A, Wagner D (2009) The continuous stop location problem in public transportation networks. Asia Pac J Oper Res 26:13–30CrossRef Schobel A, Hamacher HW, Liebers A, Wagner D (2009) The continuous stop location problem in public transportation networks. Asia Pac J Oper Res 26:13–30CrossRef
Zurück zum Zitat Spaulding BD, Cromley RG (2007) Integrating the maximum capture problem into a GIS framework. J Geogr Syst 9(3):267–288CrossRef Spaulding BD, Cromley RG (2007) Integrating the maximum capture problem into a GIS framework. J Geogr Syst 9(3):267–288CrossRef
Zurück zum Zitat Suzuki A, Okabe A (1995) Using voronoi diagrams. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 103–118CrossRef Suzuki A, Okabe A (1995) Using voronoi diagrams. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 103–118CrossRef
Zurück zum Zitat Suzuki A, Drezner Z (1996) On the p-center location problem in an area. Locat Sci 4:69–82CrossRef Suzuki A, Drezner Z (1996) On the p-center location problem in an area. Locat Sci 4:69–82CrossRef
Zurück zum Zitat Tong D (2012) Regional coverage maximization: a new model to account implicitly for complementary coverage. Geogr Anal 44:1–14CrossRef Tong D (2012) Regional coverage maximization: a new model to account implicitly for complementary coverage. Geogr Anal 44:1–14CrossRef
Zurück zum Zitat Tong D, Church RL (2012) Aggregation in continuous space coverage modeling. Int J Geogr Inf Sci 26:795–816CrossRef Tong D, Church RL (2012) Aggregation in continuous space coverage modeling. Int J Geogr Inf Sci 26:795–816CrossRef
Zurück zum Zitat Tong D, Murray AT (2009) Maximizing coverage of spatial demand for service. Pap Reg Sci 88:85–97CrossRef Tong D, Murray AT (2009) Maximizing coverage of spatial demand for service. Pap Reg Sci 88:85–97CrossRef
Zurück zum Zitat Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373CrossRef Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373CrossRef
Zurück zum Zitat Toussaint GT (1983) Computing largest empty circles with location constraints. Int J Comp Inf Sci 12(5):347–358CrossRef Toussaint GT (1983) Computing largest empty circles with location constraints. Int J Comp Inf Sci 12(5):347–358CrossRef
Zurück zum Zitat Watson-Gandy CDT (1982) Heuristic procedures for the m-partial cover problem on a plane. Eur J Oper Res 11:149–157CrossRef Watson-Gandy CDT (1982) Heuristic procedures for the m-partial cover problem on a plane. Eur J Oper Res 11:149–157CrossRef
Zurück zum Zitat Wei H, Murray AT, Xiao N (2006) Solving the continuous space p-center problem: Planning application issues. IMA J Manag Math 17:413–425CrossRef Wei H, Murray AT, Xiao N (2006) Solving the continuous space p-center problem: Planning application issues. IMA J Manag Math 17:413–425CrossRef
Zurück zum Zitat Wei R, Murray AT (2014) Evaluating polygon overlay to support spatial optimization coverage modeling. Geogr Anal 46(3):209–229CrossRef Wei R, Murray AT (2014) Evaluating polygon overlay to support spatial optimization coverage modeling. Geogr Anal 46(3):209–229CrossRef
Zurück zum Zitat Wei R, Murray AT (2015) Continuous space maximal coverage: insights, advances and challenges. Comput Oper Res 62:325–336CrossRef Wei R, Murray AT (2015) Continuous space maximal coverage: insights, advances and challenges. Comput Oper Res 62:325–336CrossRef
Zurück zum Zitat Wei R, Murray AT (2016) A parallel algorithm for coverage optimization on multi-core architectures. Int J Geogr Inf Sci 30:432–450CrossRef Wei R, Murray AT (2016) A parallel algorithm for coverage optimization on multi-core architectures. Int J Geogr Inf Sci 30:432–450CrossRef
Zurück zum Zitat Yao J, Murray AT (2013) Continuous surface representation and approximation: spatial analytical implications. Int J Geogr Inf Sci 27:883–897CrossRef Yao J, Murray AT (2013) Continuous surface representation and approximation: spatial analytical implications. Int J Geogr Inf Sci 27:883–897CrossRef
Zurück zum Zitat Yin P, Mu L (2012) Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles. Appl Geogr 34:247–254CrossRef Yin P, Mu L (2012) Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles. Appl Geogr 34:247–254CrossRef
Metadaten
Titel
Continuous Space Coverage
verfasst von
Richard L. Church
Alan Murray
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99846-6_8