Skip to main content
Erschienen in: Quantum Information Processing 10/2020

01.10.2020

Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states

verfasst von: S. Srikara, Kishore Thapliyal, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a continuous variable B92 quantum key distribution protocol is proposed using single photon added and subtracted coherent states, which are prepared by adding and subsequently subtracting a single photon on a coherent state. It is established that in contrast to the traditional discrete variable B92 protocol, this protocol for quantum key distribution is intrinsically robust against the unambiguous state discrimination attack, which circumvents the requirement for any uninformative states or entanglement used in corresponding discrete variable case as a remedy for this attack. Further, it is shown that the proposed protocol is intrinsically robust against the eavesdropping strategies exploiting classical communication during basis reconciliation, such as beam splitter attack. Security against some individual attacks, key rate, and bit-error rate estimation for the proposed scheme are also provided. Specifically, the proposed scheme ensures very small bit-error rate due to properties of the states used. Thus, the proposed scheme is shown to be preferable over the corresponding discrete variable B92 protocol as well as some similar continuous variable quantum key distribution schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSMATH Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSMATH
2.
Zurück zum Zitat Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, (2013) Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, (2013)
3.
Zurück zum Zitat Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)MathSciNet Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)MathSciNet
4.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, pp. 175–179 (1984)
6.
Zurück zum Zitat Bennett, C.H.: Quantum cryptography using any two non orthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetMATH Bennett, C.H.: Quantum cryptography using any two non orthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetMATH
7.
Zurück zum Zitat Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)ADSMathSciNetMATH Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)ADSMathSciNetMATH
8.
Zurück zum Zitat Dušek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. Prog. Optics 49, 381–454 (2006)ADS Dušek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. Prog. Optics 49, 381–454 (2006)ADS
9.
Zurück zum Zitat Lucamarini, M., Di Giuseppe, G., Tamaki, K.: Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states. Phys. Rev. A 80, 032327 (2009)ADS Lucamarini, M., Di Giuseppe, G., Tamaki, K.: Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states. Phys. Rev. A 80, 032327 (2009)ADS
10.
Zurück zum Zitat Lucamarini, M., Vallone, G., Gianani, I., Mataloni, P., Di Giuseppe, G.: Device-independent entanglement-based Bennett 1992 protocol. Phys. Rev. A 86, 032325 (2012)ADS Lucamarini, M., Vallone, G., Gianani, I., Mataloni, P., Di Giuseppe, G.: Device-independent entanglement-based Bennett 1992 protocol. Phys. Rev. A 86, 032325 (2012)ADS
11.
Zurück zum Zitat Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)ADSMathSciNet Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)ADSMathSciNet
12.
Zurück zum Zitat Chang, Y., Zhang, S.-B., Zhu, J.-M.: Comment on flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 16, 86 (2017)ADS Chang, Y., Zhang, S.-B., Zhu, J.-M.: Comment on flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 16, 86 (2017)ADS
13.
Zurück zum Zitat Ko, H., Choi, B.-S., Choe, J.-S., Youn, C.J.: Advanced unambiguous state discrimination attack and countermeasure strategy in a practical B92 QKD system. Quantum Inf. Process. 17, 17 (2018)ADSMathSciNetMATH Ko, H., Choi, B.-S., Choe, J.-S., Youn, C.J.: Advanced unambiguous state discrimination attack and countermeasure strategy in a practical B92 QKD system. Quantum Inf. Process. 17, 17 (2018)ADSMathSciNetMATH
14.
Zurück zum Zitat Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetMATH Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetMATH
15.
Zurück zum Zitat Andersen, U.L., Leuchs, G., Silberhorn, C.: Continuous-variable quantum information processing. Laser Photonics Rev. 4, 337–354 (2010)ADS Andersen, U.L., Leuchs, G., Silberhorn, C.: Continuous-variable quantum information processing. Laser Photonics Rev. 4, 337–354 (2010)ADS
16.
Zurück zum Zitat Weedbrook, C., Pirandola, S., García-Patrón, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADS Weedbrook, C., Pirandola, S., García-Patrón, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADS
17.
Zurück zum Zitat Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)ADS Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)ADS
18.
Zurück zum Zitat Reid, M.D.: Quantum cryptography with a predetermined key, using continuous-variable Einstein–Podolsky–Rosen correlations. Phys. Rev. A 62, 062308 (2000)ADS Reid, M.D.: Quantum cryptography with a predetermined key, using continuous-variable Einstein–Podolsky–Rosen correlations. Phys. Rev. A 62, 062308 (2000)ADS
19.
Zurück zum Zitat Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999)MathSciNet Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999)MathSciNet
20.
Zurück zum Zitat Ralph, T.C.: Security of continuous-variable quantum cryptography. Phys. Rev. A 62, 062306 (2000)ADS Ralph, T.C.: Security of continuous-variable quantum cryptography. Phys. Rev. A 62, 062306 (2000)ADS
21.
Zurück zum Zitat Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)ADS Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309 (2001)ADS
22.
Zurück zum Zitat Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADS Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADS
23.
Zurück zum Zitat Cerf, N.J., Levy, M., Van Assche, G.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63, 052311 (2001)ADS Cerf, N.J., Levy, M., Van Assche, G.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63, 052311 (2001)ADS
24.
Zurück zum Zitat Lütkenhaus, N., Shields, A.: Focus on quantum cryptography: theory and practice. New J. Phys. 11, 045005 (2009)ADS Lütkenhaus, N., Shields, A.: Focus on quantum cryptography: theory and practice. New J. Phys. 11, 045005 (2009)ADS
25.
Zurück zum Zitat Diamanti, E., Leverrier, A.: Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17, 6072–6092 (2015)ADSMathSciNetMATH Diamanti, E., Leverrier, A.: Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17, 6072–6092 (2015)ADSMathSciNetMATH
26.
Zurück zum Zitat Borelli, L.F., Aguiar, L.d S., Roversi, J.A., Vidiella-Barranco, A.: Quantum key distribution using continuous-variable non-Gaussian states. Quantum Inf. Process. 15, 893–904 (2016)ADSMathSciNetMATH Borelli, L.F., Aguiar, L.d S., Roversi, J.A., Vidiella-Barranco, A.: Quantum key distribution using continuous-variable non-Gaussian states. Quantum Inf. Process. 15, 893–904 (2016)ADSMathSciNetMATH
27.
Zurück zum Zitat Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADS Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADS
28.
Zurück zum Zitat Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)ADS Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)ADS
29.
Zurück zum Zitat Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)ADS Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)ADS
30.
Zurück zum Zitat Liu, W., Huang, P., Peng, J., Fan, J., Zeng, G.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97, 022316 (2018)ADS Liu, W., Huang, P., Peng, J., Fan, J., Zeng, G.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97, 022316 (2018)ADS
31.
Zurück zum Zitat Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Parameter estimation with almost no public communication for continuous-variable quantum key distribution. Phys. Rev. Lett. 120, 220505 (2018)ADS Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Parameter estimation with almost no public communication for continuous-variable quantum key distribution. Phys. Rev. Lett. 120, 220505 (2018)ADS
32.
Zurück zum Zitat Pirandola, S., Ottaviani, C., Spedalieri, G., et al.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)ADS Pirandola, S., Ottaviani, C., Spedalieri, G., et al.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)ADS
33.
Zurück zum Zitat Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90, 042311 (2014)ADS Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90, 042311 (2014)ADS
34.
Zurück zum Zitat Zhou, J., Huang, D., Guo, Y.: Long-distance continuous-variable quantum key distribution using separable Gaussian states. Phys. Rev. A 98, 042303 (2018)ADS Zhou, J., Huang, D., Guo, Y.: Long-distance continuous-variable quantum key distribution using separable Gaussian states. Phys. Rev. A 98, 042303 (2018)ADS
35.
Zurück zum Zitat Heim, B., Peuntinger, C., Killoran, N., et al.: Atmospheric continuous-variable quantum communication. New J. Phys. 16, 113018 (2014)ADS Heim, B., Peuntinger, C., Killoran, N., et al.: Atmospheric continuous-variable quantum communication. New J. Phys. 16, 113018 (2014)ADS
36.
Zurück zum Zitat Hosseinidehaj, N., Babar, Z., Malaney, R., Ng, S.X., Hanzo, L.: Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 21, 881–919 (2018) Hosseinidehaj, N., Babar, Z., Malaney, R., Ng, S.X., Hanzo, L.: Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 21, 881–919 (2018)
37.
Zurück zum Zitat Liu, W., Peng, J., Wang, C., et al.: Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China Phys. Mech. Astron. 58, 1–7 (2015) Liu, W., Peng, J., Wang, C., et al.: Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China Phys. Mech. Astron. 58, 1–7 (2015)
38.
Zurück zum Zitat Jacobsen, C.S., Madsen, L.S., Usenko, V.C., Filip, R., Andersen, U.L.: Complete elimination of information leakage in continuous-variable quantum communication channels. npj Quantum Inf. 4, 32 (2018)ADS Jacobsen, C.S., Madsen, L.S., Usenko, V.C., Filip, R., Andersen, U.L.: Complete elimination of information leakage in continuous-variable quantum communication channels. npj Quantum Inf. 4, 32 (2018)ADS
39.
Zurück zum Zitat Croal, C., Peuntinger, C., Heim, B., et al.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)ADS Croal, C., Peuntinger, C., Heim, B., et al.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)ADS
40.
Zurück zum Zitat Saxena, A., Thapliyal, K., Pathak, A.: Continuous variable controlled quantum dialogue and secure multiparty quantum computation. Int. J. Quantum Inf. 18, 2050009 (2020)MathSciNetMATH Saxena, A., Thapliyal, K., Pathak, A.: Continuous variable controlled quantum dialogue and secure multiparty quantum computation. Int. J. Quantum Inf. 18, 2050009 (2020)MathSciNetMATH
41.
Zurück zum Zitat Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using Gaussian states. Quantum Inf. Process. 19, 132 (2020)ADSMathSciNet Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using Gaussian states. Quantum Inf. Process. 19, 132 (2020)ADSMathSciNet
42.
Zurück zum Zitat Wu, Y., Zhou, J., Gong, X., et al.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93, 022325 (2016)ADS Wu, Y., Zhou, J., Gong, X., et al.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93, 022325 (2016)ADS
43.
Zurück zum Zitat Qi, B., Siopsis, G.: Loss-tolerant position-based quantum cryptography. Phys. Rev. A 91, 042337 (2015)ADS Qi, B., Siopsis, G.: Loss-tolerant position-based quantum cryptography. Phys. Rev. A 91, 042337 (2015)ADS
44.
Zurück zum Zitat Ma, H.-X., Huang, P., Bai, D.-Y., et al.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99, 022322 (2019)ADS Ma, H.-X., Huang, P., Bai, D.-Y., et al.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99, 022322 (2019)ADS
45.
Zurück zum Zitat Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADS Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADS
46.
Zurück zum Zitat Thapliyal, K., Samantray, N.L., Banerji, J., Pathak, A.: Comparison of lower- and higher-order nonclassicality in photon added and subtracted squeezed coherent states. Phys. Lett. A 381, 3178–3187 (2017) Thapliyal, K., Samantray, N.L., Banerji, J., Pathak, A.: Comparison of lower- and higher-order nonclassicality in photon added and subtracted squeezed coherent states. Phys. Lett. A 381, 3178–3187 (2017)
47.
Zurück zum Zitat Malpani, P., Alam, N., Thapliyal, K., et al.: Lower-and higher-order nonclassical properties of photon added and subtracted displaced Fock states. Ann. Phys. (Berl.) 531, 1800318 (2019)ADS Malpani, P., Alam, N., Thapliyal, K., et al.: Lower-and higher-order nonclassical properties of photon added and subtracted displaced Fock states. Ann. Phys. (Berl.) 531, 1800318 (2019)ADS
48.
Zurück zum Zitat Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)ADSMATH Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)ADSMATH
49.
50.
Zurück zum Zitat Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetMATH Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetMATH
51.
Zurück zum Zitat Moya-Cessa, H., Knight, P.L.: Series representation of quantum-field quasiprobabilities. Phys. Rev. A 48, 2479 (1993)ADS Moya-Cessa, H., Knight, P.L.: Series representation of quantum-field quasiprobabilities. Phys. Rev. A 48, 2479 (1993)ADS
52.
Zurück zum Zitat Wang, Z., Yuan, H-c, Fan, H-y: Nonclassicality of the photon addition-then-subtraction coherent state and its decoherence in the photon-loss channel. J. Opt. Soc. Am. B 28, 1964–1972 (2011)ADS Wang, Z., Yuan, H-c, Fan, H-y: Nonclassicality of the photon addition-then-subtraction coherent state and its decoherence in the photon-loss channel. J. Opt. Soc. Am. B 28, 1964–1972 (2011)ADS
53.
Zurück zum Zitat Horak, P.: The role of squeezing in quantum key distribution based on homodyne detection and post-selection. J. Mod. Opt. 51, 1249–1264 (2004)ADSMathSciNetMATH Horak, P.: The role of squeezing in quantum key distribution based on homodyne detection and post-selection. J. Mod. Opt. 51, 1249–1264 (2004)ADSMathSciNetMATH
54.
Zurück zum Zitat Lütkenhaus, N.: Security against eavesdropping in quantum cryptography. Phys. Rev. A 54, 97 (1996)ADS Lütkenhaus, N.: Security against eavesdropping in quantum cryptography. Phys. Rev. A 54, 97 (1996)ADS
55.
Zurück zum Zitat Namiki, R., Hirano, T.: Practical limitation for continuous-variable quantum cryptography using coherent states. Phys. Rev. Lett. 92, 117901 (2004)ADS Namiki, R., Hirano, T.: Practical limitation for continuous-variable quantum cryptography using coherent states. Phys. Rev. Lett. 92, 117901 (2004)ADS
56.
Zurück zum Zitat Xu, F., Curty, M., Qi, B., Qian, L., Lo, H.-K.: Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 9, 772 (2015)ADS Xu, F., Curty, M., Qi, B., Qian, L., Lo, H.-K.: Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 9, 772 (2015)ADS
57.
Zurück zum Zitat Etengu, R., Abbou, F.M., Wong, H.Y., Abid, A., Nortiza, N., Setharaman, A.: Performance comparison of BB84 and B92 satellite-based free space quantum optical communication systems in the presence of channel effects. J. Opt. Commun. 32, 37 (2011) Etengu, R., Abbou, F.M., Wong, H.Y., Abid, A., Nortiza, N., Setharaman, A.: Performance comparison of BB84 and B92 satellite-based free space quantum optical communication systems in the presence of channel effects. J. Opt. Commun. 32, 37 (2011)
58.
Zurück zum Zitat Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)ADS Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)ADS
59.
Zurück zum Zitat Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018) Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)
60.
Zurück zum Zitat Phoenix, S.J., Barnett, S.M., Chefles, A.: Three-state quantum cryptography. J. Mod. Opt. 47, 507 (2000)ADSMathSciNet Phoenix, S.J., Barnett, S.M., Chefles, A.: Three-state quantum cryptography. J. Mod. Opt. 47, 507 (2000)ADSMathSciNet
61.
Zurück zum Zitat Boileau, J.C., Tamaki, K., Batuwantudawe, J., Laflamme, R., Renes, J.M.: Unconditional security of a three state quantum key distribution protocol. Phys. Rev. Lett. 94, 040503 (2005)ADSMathSciNet Boileau, J.C., Tamaki, K., Batuwantudawe, J., Laflamme, R., Renes, J.M.: Unconditional security of a three state quantum key distribution protocol. Phys. Rev. Lett. 94, 040503 (2005)ADSMathSciNet
Metadaten
Titel
Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states
verfasst von
S. Srikara
Kishore Thapliyal
Anirban Pathak
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02872-6

Weitere Artikel der Ausgabe 10/2020

Quantum Information Processing 10/2020 Zur Ausgabe

Neuer Inhalt