Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

22.03.2022

Contrast Enhancement of Retinal Images Using Green Plan Masking and Whale Optimization Algorithm

verfasst von: A. Bhuvaneswari, T. Meera Devi

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Contrast enhancement is considered as most significant pre-processing technique essential for improving the quality of the medical image to carry out more detailed analysis. Various contrast enhancement technique had been developed utilizing masking and filtering approach to enhance medical image quality. Still, these traditional techniques faces challenges in attaining better quality due to presence of fixed scale value. To achive better quality medical image the current research aims on designing efficient contrast technique using Whale Optimization Algorithm (WOA) employed Green Plan Masking (GPM) for application in retinal images. In this proposed work initially the green plan is separted from the input retinal image. then, median filter is applied to the green plan. Following that optimal scale value selection is done using WOA algorithm. Finally, green plan masking approach is applied to obtain enhanced image. Within green plan masking approach the output obtained after applying median filtering is considered. To this output image Gaussian blur and convolutional filter is applied to obtain unsharp green plane image. Further in selection of optimal scale value the edges of the unshrap image is detected using canny edge detection technique. Fitness function considered for WOA algorithm is PNSR of orginal iamge and edge detected image. The remaining red and blue plane is added along with green plane to reach the final enhanced image. Performance of the proposed contrast enhancement technique is analysed through estimating some of the metrics, such as Structural Similarity Index (SSIM), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE). The MSE, PSNR, MAE and SSIM value obtained for the proposed design is 0.139, 65.81, 0.039 and 0.97. this analysis suggests that superior performance is attained using this proposed contrast enhancement technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lakshmanna, M., & Maheswari, A. (2013). Modified classical unsharp masking algorithm. International Journal of Advanced Research in Computer Science and Software Engineering, 3(9), 271–276. Lakshmanna, M., & Maheswari, A. (2013). Modified classical unsharp masking algorithm. International Journal of Advanced Research in Computer Science and Software Engineering, 3(9), 271–276.
2.
Zurück zum Zitat Kanmani, M., & Narasimhan, V. (2018). An image contrast enhancement algorithm for grayscale images using particle swarm optimization. Multimedia Tools and Applications, 77(18), 23371–23387.CrossRef Kanmani, M., & Narasimhan, V. (2018). An image contrast enhancement algorithm for grayscale images using particle swarm optimization. Multimedia Tools and Applications, 77(18), 23371–23387.CrossRef
3.
Zurück zum Zitat Issac, A., Dutta, M. K., & Travieso, C. M. (2018). Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy. Neural Computing and Applications, 32, 1–11. Issac, A., Dutta, M. K., & Travieso, C. M. (2018). Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy. Neural Computing and Applications, 32, 1–11.
4.
Zurück zum Zitat Shabnam, S., & Hemachandran, K. (2016). LSB based steganography using bit masking method on RGB planes. International Journal of Computer Science and Information Technologies (IJCSIT), 7(3), 1169–1173. Shabnam, S., & Hemachandran, K. (2016). LSB based steganography using bit masking method on RGB planes. International Journal of Computer Science and Information Technologies (IJCSIT), 7(3), 1169–1173.
5.
Zurück zum Zitat Quinn, M., & Olszewska, J. I. (2019). British sign language recognition in the wild based on multi-class SVM. In 2019 federated conference on computer science and information systems (FedCSIS) (pp. 81–86). IEEE. Quinn, M., & Olszewska, J. I. (2019). British sign language recognition in the wild based on multi-class SVM. In 2019 federated conference on computer science and information systems (FedCSIS) (pp. 81–86). IEEE.
6.
Zurück zum Zitat Hoseini, P., & Shayesteh, M. G. (2013). Efficient contrast enhancement of images using hybrid ant colony optimization, genetic algorithm, and simulated annealing. Digital Signal Processing, 23(3), 879–893.MathSciNetCrossRef Hoseini, P., & Shayesteh, M. G. (2013). Efficient contrast enhancement of images using hybrid ant colony optimization, genetic algorithm, and simulated annealing. Digital Signal Processing, 23(3), 879–893.MathSciNetCrossRef
7.
Zurück zum Zitat Srinidhi, C. L., Aparna, P., & Rajan, J. (2017). Recent advancements in retinal vessel segmentation. Journal of Medical Systems, 41(4), 70.CrossRef Srinidhi, C. L., Aparna, P., & Rajan, J. (2017). Recent advancements in retinal vessel segmentation. Journal of Medical Systems, 41(4), 70.CrossRef
8.
Zurück zum Zitat Zhao, Y., Rada, L., Chen, K., Harding, S. P., & Zheng, Y. (2015). Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9), 1797–1807.CrossRef Zhao, Y., Rada, L., Chen, K., Harding, S. P., & Zheng, Y. (2015). Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9), 1797–1807.CrossRef
9.
Zurück zum Zitat Olszewska, J. I. (2015). Active contour based optical character recognition for automated scene understanding. Neurocomputing, 161, 65–71.CrossRef Olszewska, J. I. (2015). Active contour based optical character recognition for automated scene understanding. Neurocomputing, 161, 65–71.CrossRef
10.
Zurück zum Zitat Ramani, R. G., & Balasubramanian, L. (2016). Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybernetics and Biomedical Engineering, 36(1), 102–118.CrossRef Ramani, R. G., & Balasubramanian, L. (2016). Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybernetics and Biomedical Engineering, 36(1), 102–118.CrossRef
11.
Zurück zum Zitat Daniel, E., & Anitha, J. (2016). Optimum wavelet-based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Computers in Biology and Medicine, 71, 149–155.CrossRef Daniel, E., & Anitha, J. (2016). Optimum wavelet-based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Computers in Biology and Medicine, 71, 149–155.CrossRef
12.
Zurück zum Zitat Pereira, C., Gonçalves, L., & Ferreira, M. (2015). Exudate segmentation in fundus images using an ant colony optimization approach. Information Sciences, 296, 14–24.MathSciNetCrossRef Pereira, C., Gonçalves, L., & Ferreira, M. (2015). Exudate segmentation in fundus images using an ant colony optimization approach. Information Sciences, 296, 14–24.MathSciNetCrossRef
13.
Zurück zum Zitat Liao, M., Zhao, Y.-Q., Wang, X.-H., & Dai, P.-S. (2014). Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58, 56–62.CrossRef Liao, M., Zhao, Y.-Q., Wang, X.-H., & Dai, P.-S. (2014). Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58, 56–62.CrossRef
14.
Zurück zum Zitat Wu, B., Zhu, W., Shi, F., Zhu, S., & Chen, X. (2017). Automatic detection of microaneurysms in retinal fundus images. Computerized Medical Imaging and Graphics, 55, 106–112.CrossRef Wu, B., Zhu, W., Shi, F., Zhu, S., & Chen, X. (2017). Automatic detection of microaneurysms in retinal fundus images. Computerized Medical Imaging and Graphics, 55, 106–112.CrossRef
15.
Zurück zum Zitat Zhao, Y. Q., Wang, X. H., Wang, X. F., & Shih, F. Y. (2014). Retinal vessels segmentation based on level set and region growing. Pattern Recognition, 47(7), 2437–2446.CrossRef Zhao, Y. Q., Wang, X. H., Wang, X. F., & Shih, F. Y. (2014). Retinal vessels segmentation based on level set and region growing. Pattern Recognition, 47(7), 2437–2446.CrossRef
16.
Zurück zum Zitat Gupta, B., & Tiwari, M. (2019). Color retinal image enhancement using luminosity and quantile based contrast enhancement. Multidimensional Systems and Signal Processing, 30, 1–9.CrossRef Gupta, B., & Tiwari, M. (2019). Color retinal image enhancement using luminosity and quantile based contrast enhancement. Multidimensional Systems and Signal Processing, 30, 1–9.CrossRef
17.
Zurück zum Zitat Emary, E., Zawbaa, H. M., Hassanien, A. E., Schaefer, G., & Azar, A. T. (2014). Retinal blood vessel segmentation using bee colony optimization and pattern search. In 2014 international joint conference on neural networks (IJCNN) (pp.1001–1006). IEEE. Emary, E., Zawbaa, H. M., Hassanien, A. E., Schaefer, G., & Azar, A. T. (2014). Retinal blood vessel segmentation using bee colony optimization and pattern search. In 2014 international joint conference on neural networks (IJCNN) (pp.1001–1006). IEEE.
18.
Zurück zum Zitat Aurangzeb, K., Aslam, S., Alhussein, M., Naqvi, R. A., Arsalan, M., & Haider, S. I. (2021). Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models. IEEE Access, 9, 47930–47945.CrossRef Aurangzeb, K., Aslam, S., Alhussein, M., Naqvi, R. A., Arsalan, M., & Haider, S. I. (2021). Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models. IEEE Access, 9, 47930–47945.CrossRef
19.
Zurück zum Zitat Wang, J., Li, Y. J., & Yang, K. F. (2021). Retinal fundus image enhancement with image decomposition and visual adaptation. Computers in Biology and Medicine, 128, 104116.CrossRef Wang, J., Li, Y. J., & Yang, K. F. (2021). Retinal fundus image enhancement with image decomposition and visual adaptation. Computers in Biology and Medicine, 128, 104116.CrossRef
20.
Zurück zum Zitat Johri, A., Bhateja, V., Pal, D., & Pal, B. (2021). Enhancement of retinal images using morphological filters. In Data engineering and intelligent computing (pp. 351–357). Singapore: Springer. Johri, A., Bhateja, V., Pal, D., & Pal, B. (2021). Enhancement of retinal images using morphological filters. In Data engineering and intelligent computing (pp. 351–357). Singapore: Springer.
21.
Zurück zum Zitat Tung, T. C., & Fuh, C. S. (2021). ICEBIN: Image contrast enhancement based on induced norm and local patch approaches. IEEE Access, 9, 23737–23750.CrossRef Tung, T. C., & Fuh, C. S. (2021). ICEBIN: Image contrast enhancement based on induced norm and local patch approaches. IEEE Access, 9, 23737–23750.CrossRef
22.
Zurück zum Zitat Alwazzan, M. J., Ismael, M. A., & Ahmed, A. N. (2021). A hybrid algorithm to enhance colour retinal fundus images using a Wiener filter and CLAHE. Journal of Digital Imaging, 34, 1–10.CrossRef Alwazzan, M. J., Ismael, M. A., & Ahmed, A. N. (2021). A hybrid algorithm to enhance colour retinal fundus images using a Wiener filter and CLAHE. Journal of Digital Imaging, 34, 1–10.CrossRef
23.
Zurück zum Zitat Daniel, E., & Anitha, J. (2015). Optimum green plane masking for the contrast enhancement of retinal images using enhanced genetic algorithm. Optik, 126(18), 1726–1730.CrossRef Daniel, E., & Anitha, J. (2015). Optimum green plane masking for the contrast enhancement of retinal images using enhanced genetic algorithm. Optik, 126(18), 1726–1730.CrossRef
24.
Zurück zum Zitat Huang, S.-C., & Yeh, C.-H. (2013). Image contrast enhancement for preserving mean brightness without losing image features. Engineering Applications of Artificial Intelligence, 26(5–6), 1487–1492.CrossRef Huang, S.-C., & Yeh, C.-H. (2013). Image contrast enhancement for preserving mean brightness without losing image features. Engineering Applications of Artificial Intelligence, 26(5–6), 1487–1492.CrossRef
25.
Zurück zum Zitat Gao, H., Hu, M., Gao, T., & Cheng, R. (2019). Robust detection of median filtering based on combined features of difference image. Signal Processing: Image Communication, 72, 126–133. Gao, H., Hu, M., Gao, T., & Cheng, R. (2019). Robust detection of median filtering based on combined features of difference image. Signal Processing: Image Communication, 72, 126–133.
26.
Zurück zum Zitat Fujimoto, T. R., Kawasaki, T., & Kitamura, K. (2019). Canny-Edge-Detection/Rankine-Hugoniot-conditions unified shock sensor for inviscid and viscous flows. Journal of Computational Physics, 396, 264–279.MathSciNetCrossRef Fujimoto, T. R., Kawasaki, T., & Kitamura, K. (2019). Canny-Edge-Detection/Rankine-Hugoniot-conditions unified shock sensor for inviscid and viscous flows. Journal of Computational Physics, 396, 264–279.MathSciNetCrossRef
27.
Zurück zum Zitat Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
28.
Zurück zum Zitat Aziz, M. A. E., Ewees, A. A., & Hassanien, A. E. (2017). Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242–256.CrossRef Aziz, M. A. E., Ewees, A. A., & Hassanien, A. E. (2017). Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242–256.CrossRef
29.
Zurück zum Zitat Thakur, N., & Juneja, M. (2021). Pre-processing of retinal images for removal of outliers. Wireless Personal Communications, 116(1), 739–765.CrossRef Thakur, N., & Juneja, M. (2021). Pre-processing of retinal images for removal of outliers. Wireless Personal Communications, 116(1), 739–765.CrossRef
30.
Zurück zum Zitat Bataineh, B., & Almotairi, K. H. (2021). Enhancement method for color retinal fundus images based on structural details and illumination improvements. Arabian Journal for Science and Engineering, 46, 1–15.CrossRef Bataineh, B., & Almotairi, K. H. (2021). Enhancement method for color retinal fundus images based on structural details and illumination improvements. Arabian Journal for Science and Engineering, 46, 1–15.CrossRef
31.
Zurück zum Zitat Gegundez-Arias, M. E., Marin-Santos, D., Perez-Borrero, I., & Vasallo-Vazquez, M. J. (2021). A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Computer Methods and Programs in Biomedicine, 205, 106081.CrossRef Gegundez-Arias, M. E., Marin-Santos, D., Perez-Borrero, I., & Vasallo-Vazquez, M. J. (2021). A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Computer Methods and Programs in Biomedicine, 205, 106081.CrossRef
32.
Zurück zum Zitat Shin, Y. G., Park, S., Yeo, Y. J., Yoo, M. J., & Ko, S. J. (2019). Unsupervised deep contrast enhancement with power constraint for OLED displays. IEEE Transactions on Image Processing, 29, 2834–2844.CrossRef Shin, Y. G., Park, S., Yeo, Y. J., Yoo, M. J., & Ko, S. J. (2019). Unsupervised deep contrast enhancement with power constraint for OLED displays. IEEE Transactions on Image Processing, 29, 2834–2844.CrossRef
Metadaten
Titel
Contrast Enhancement of Retinal Images Using Green Plan Masking and Whale Optimization Algorithm
verfasst von
A. Bhuvaneswari
T. Meera Devi
Publikationsdatum
22.03.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09586-1

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt