Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2013

01.04.2013 | Research Paper

Control growth of silicon nanocolumns’ epitaxy on silicon nanowires

verfasst von: Su Kong Chong, Chang Fu Dee, Noorhana Yahya, Saadah Abdul Rahman

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius ~21 ± 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10–20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns’ decorated SiNW arrays are discussed in the text.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adachi MM, Anantram MP, Karim KS (2010) Optical properties of crystalline-amorphous core-shell silicon nanowires. Nano Lett 10(10):4093–4098CrossRef Adachi MM, Anantram MP, Karim KS (2010) Optical properties of crystalline-amorphous core-shell silicon nanowires. Nano Lett 10(10):4093–4098CrossRef
Zurück zum Zitat Alper JP, Vincent M, Carraro C, Maboudian R (2012) Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Appl Phys Lett 100(16):163901CrossRef Alper JP, Vincent M, Carraro C, Maboudian R (2012) Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Appl Phys Lett 100(16):163901CrossRef
Zurück zum Zitat Amanatides E, Mataras D (2011) Growth kinetics of plasma deposited microcrystalline silicon thin films. Surf Coat Technol 205(S2):S178–S181CrossRef Amanatides E, Mataras D (2011) Growth kinetics of plasma deposited microcrystalline silicon thin films. Surf Coat Technol 205(S2):S178–S181CrossRef
Zurück zum Zitat Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2(10):1050–1059CrossRef Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2(10):1050–1059CrossRef
Zurück zum Zitat Burns GP (1988) Low-temperature native oxide removal from silicon using nitrogen trifluoride prior to low-temperature silicon epitaxy. Appl Phys Lett 53(15):1423–1425CrossRef Burns GP (1988) Low-temperature native oxide removal from silicon using nitrogen trifluoride prior to low-temperature silicon epitaxy. Appl Phys Lett 53(15):1423–1425CrossRef
Zurück zum Zitat Chen XL, Lan YC, Li JY, Cao YG, He M (2001) Radial growth dynamics of nanowires. J Cryst Growth 222(3):586–590CrossRef Chen XL, Lan YC, Li JY, Cao YG, He M (2001) Radial growth dynamics of nanowires. J Cryst Growth 222(3):586–590CrossRef
Zurück zum Zitat Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011a) Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Mater Lett 65(15–16):2452–2454CrossRef Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011a) Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Mater Lett 65(15–16):2452–2454CrossRef
Zurück zum Zitat Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011b) Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chem Phys Lett 515(1–3):68–71CrossRef Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011b) Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chem Phys Lett 515(1–3):68–71CrossRef
Zurück zum Zitat Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011c) Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique. Thin Solid Films 519(15):4933–4939CrossRef Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011c) Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique. Thin Solid Films 519(15):4933–4939CrossRef
Zurück zum Zitat Chong SK, Goh BT, Dee CF, Rahman SA (2012) Study on the role of filament temperature on growth of indium-catalyzed silicon nanowires by the hot-wire chemical vapor deposition technique. Mater Chem Phys 135(2–3):635–643CrossRef Chong SK, Goh BT, Dee CF, Rahman SA (2012) Study on the role of filament temperature on growth of indium-catalyzed silicon nanowires by the hot-wire chemical vapor deposition technique. Mater Chem Phys 135(2–3):635–643CrossRef
Zurück zum Zitat Hayden O, Agarwal R, Lu W (2008) Semiconductor nanowire devices. Nano Today 3(5–6):12–22CrossRef Hayden O, Agarwal R, Lu W (2008) Semiconductor nanowire devices. Nano Today 3(5–6):12–22CrossRef
Zurück zum Zitat Kale VS, Prabhakar RR, Pramana SS, Rao M, Sow CH, Jinesh KB, Mhaisalkar SG (2012) Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. Phys Chem Chem Phys 14:4614–4619CrossRef Kale VS, Prabhakar RR, Pramana SS, Rao M, Sow CH, Jinesh KB, Mhaisalkar SG (2012) Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. Phys Chem Chem Phys 14:4614–4619CrossRef
Zurück zum Zitat Kawashima T, Mizutani T, Nakagawa T, Torii H, Saitoh T, Komori K, Fujii M (2008) Control of surface migration of gold particles on Si nanowires. Nano Lett 8(1):362–368CrossRef Kawashima T, Mizutani T, Nakagawa T, Torii H, Saitoh T, Komori K, Fujii M (2008) Control of surface migration of gold particles on Si nanowires. Nano Lett 8(1):362–368CrossRef
Zurück zum Zitat Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911):57–61CrossRef Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911):57–61CrossRef
Zurück zum Zitat Madras P, Dailey E, Drucker J (2010) Spreading of liquid AuSi on vapor-liquid-solid-grown Si nanowires. Nano Lett 10(5):1759–1763CrossRef Madras P, Dailey E, Drucker J (2010) Spreading of liquid AuSi on vapor-liquid-solid-grown Si nanowires. Nano Lett 10(5):1759–1763CrossRef
Zurück zum Zitat Martin IT, Teplin CW, Doyle JR, Branz HM, Stradins P (2010) Physics and chemistry of hot-wire chemical vapor deposition from silane: measuring and modeling the silicon epitaxy deposition rate. J Appl Phys 107(5):054906CrossRef Martin IT, Teplin CW, Doyle JR, Branz HM, Stradins P (2010) Physics and chemistry of hot-wire chemical vapor deposition from silane: measuring and modeling the silicon epitaxy deposition rate. J Appl Phys 107(5):054906CrossRef
Zurück zum Zitat Oehler F, Gentile P, Baron T, Ferret P, Hertog MD, Rouviere J (2010) The importance of the radial growth in the faceting of silicon nanowire. Nano Lett 10(7):2335–2341CrossRef Oehler F, Gentile P, Baron T, Ferret P, Hertog MD, Rouviere J (2010) The importance of the radial growth in the faceting of silicon nanowire. Nano Lett 10(7):2335–2341CrossRef
Zurück zum Zitat Pan L, Lew KK, Redwing JM, Dickey EC (2005) Stranski–Krastanow growth of germanium on silicon nanowires. Nano Lett 5(6):1081–1085CrossRef Pan L, Lew KK, Redwing JM, Dickey EC (2005) Stranski–Krastanow growth of germanium on silicon nanowires. Nano Lett 5(6):1081–1085CrossRef
Zurück zum Zitat Richardson CE, Mason MS, Atwater HA (2006) Hot-wire CVD-grown epitaxial Si films on Si (100) substrates and a model of epitaxial breakdown. Thin Solid Films 501(1–2):332–334CrossRef Richardson CE, Mason MS, Atwater HA (2006) Hot-wire CVD-grown epitaxial Si films on Si (100) substrates and a model of epitaxial breakdown. Thin Solid Films 501(1–2):332–334CrossRef
Zurück zum Zitat Rurali R (2010) Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 82(1):427–449CrossRef Rurali R (2010) Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 82(1):427–449CrossRef
Zurück zum Zitat Sadeghian RB, Islam MS (2011) Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nat Mater 10(2):135–140CrossRef Sadeghian RB, Islam MS (2011) Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nat Mater 10(2):135–140CrossRef
Zurück zum Zitat Schmidt V, Senz S, Gosele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5(5):931–935CrossRef Schmidt V, Senz S, Gosele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5(5):931–935CrossRef
Zurück zum Zitat Sriraman S, Agarwal S, Aydil ES, Maroudas D (2002) Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418(6893):62–65CrossRef Sriraman S, Agarwal S, Aydil ES, Maroudas D (2002) Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418(6893):62–65CrossRef
Zurück zum Zitat Suzuki K, Tashiro H, Aoyama T (1999) Diffusion coefficient of indium in Si substrates and analytical redistribution profile model. Solid-State Electron 43(1):27–31CrossRef Suzuki K, Tashiro H, Aoyama T (1999) Diffusion coefficient of indium in Si substrates and analytical redistribution profile model. Solid-State Electron 43(1):27–31CrossRef
Zurück zum Zitat Thiesen J, Iwaniczko E, Jones KM, Mahan A, Crandall R (1999) Growth of epitaxial silicon at low temperatures using hot-wire chemical vapor deposition. Appl Phys Lett 75(7):992–994CrossRef Thiesen J, Iwaniczko E, Jones KM, Mahan A, Crandall R (1999) Growth of epitaxial silicon at low temperatures using hot-wire chemical vapor deposition. Appl Phys Lett 75(7):992–994CrossRef
Zurück zum Zitat Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRef Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889CrossRef
Zurück zum Zitat Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–94CrossRef Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–94CrossRef
Zurück zum Zitat Wang ZW, Li ZY (2009) Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett 9(4):1467–1471CrossRef Wang ZW, Li ZY (2009) Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett 9(4):1467–1471CrossRef
Zurück zum Zitat Wanka HN, Schubert MB (1997) High silicon etch rates by hot filament generated atomic hydrogen. J Phys D Appl Phys 30(8):L28–L31CrossRef Wanka HN, Schubert MB (1997) High silicon etch rates by hot filament generated atomic hydrogen. J Phys D Appl Phys 30(8):L28–L31CrossRef
Zurück zum Zitat Woo YS, Kang K, Jo MH, Jeon JM, Kim M (2007) Solid-phase epitaxy of amorphous Si using single-crystalline Si nanowire seed templates. Appl Phys Lett 91(22):223107CrossRef Woo YS, Kang K, Jo MH, Jeon JM, Kim M (2007) Solid-phase epitaxy of amorphous Si using single-crystalline Si nanowire seed templates. Appl Phys Lett 91(22):223107CrossRef
Zurück zum Zitat Xu T, Nys JP, Addad A, Lebedev OI, Urbieta A, Salhi B, Berthe M, Grandider B, Stievenard D (2010) Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties. Phys Rev B 81(11):115403CrossRef Xu T, Nys JP, Addad A, Lebedev OI, Urbieta A, Salhi B, Berthe M, Grandider B, Stievenard D (2010) Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties. Phys Rev B 81(11):115403CrossRef
Zurück zum Zitat Yu L, O’Donnell B, Maurice JL, Cabarrocas PRi (2010) Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires. Appl Phys Lett 97(2):023107CrossRef Yu L, O’Donnell B, Maurice JL, Cabarrocas PRi (2010) Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires. Appl Phys Lett 97(2):023107CrossRef
Zurück zum Zitat Zhang X, Di Q, Zhu F, Sun G, Zhang H (2011) Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical properties. Micro Nano Lett 6(11):947–950CrossRef Zhang X, Di Q, Zhu F, Sun G, Zhang H (2011) Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical properties. Micro Nano Lett 6(11):947–950CrossRef
Metadaten
Titel
Control growth of silicon nanocolumns’ epitaxy on silicon nanowires
verfasst von
Su Kong Chong
Chang Fu Dee
Noorhana Yahya
Saadah Abdul Rahman
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1571-z

Weitere Artikel der Ausgabe 4/2013

Journal of Nanoparticle Research 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.